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A method for measuring the quality of friction skin impression
evidence: Method development and validation
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A B S T R A C T

The forensic fingerprint community has faced increasing criticism by scientific and legal commentators,
challenging the validity and reliability of fingerprint evidence due to the lack of an empirical basis to
assess the quality of the friction ridge impressions. This paper presents a method, developed as a stand-
alone software application, DFIQI (“Defense Fingerprint Image Quality Index”), which measures the
clarity of friction ridge features (locally) and evaluates the quality of impressions (globally) across three
different scales: value, complexity, and difficulty. Performance was evaluated using a variety of datasets,
including datasets designed to simulate casework and a dataset derived directly from casework under
operational conditions. The results show performance characteristics that are consistent with experts’
subjective determinations. This method provides fingerprint experts: (1) a more rigorous approach by
providing an empirical foundation to support their subjective determinations from the Analysis phase of
the examination methodology, (2) a framework for organizations to establish transparent, measurable,
and demonstrable criteria for Value determinations, (3) and a means of flagging impressions that are
vulnerable to erroneous outcomes or inconsistency between experts (e.g., higher complexity and
difficulty), and (4) a method for quantitatively summarizing the overall quality of impressions for
ensuring representative distributions for samples used in research designs, proficiency testing and error
rate testing, and other applications by forensic science stakeholders.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Friction ridge examination is practiced by nearly every forensic
laboratory throughout the world and is often relied upon as
evidence that an individual touched an item or was present at the
scene of a crime. The process for conducting friction ridge
examination is described by the acronym ACE-V, which stands
for “Analysis”, “Comparison”, “Evaluation”, and “Verification”. ACE-
V has been described in the forensic literature as a means of
comparative analysis of evidence since 1959 [1]. The process
begins with the analysis of the latent print in which human
analysts will visually observe and interpret friction ridge detail in a
latent impression and determine if it is “suitable” or “of value” for
comparison purposes. This determination is an experience-based
judgment based on the quality and quantity of friction ridge detail
discernible in the impression. If a latent print does not have

“sufficient” detail to form a conclusion regarding the source of the
impression, the impression is determined to be “not suitable” or
“no value” and no comparison is made. If an impression is
determined to be “of value”, the analyst will perform a side-by-side
comparison of the friction ridge detail between the latent print and
the known prints from an individual. During comparison, and
ultimately thereafter, the analyst will evaluate the similarities and
differences of the friction ridge detail between the two impres-
sions and form a conclusion regarding the source of the
impression. Verification occurs when another qualified analyst
repeats the observations and forms the same conclusion.

Within the ACE-V process, the “analysis” of the friction ridge
skin detail is one of the most critical tasks of the examination as it
establishes whether, and to what extent, the impression bears
sufficiently discernible features that can be used for examination.
More specifically, during the “analysis”, the analyst is particularly
concerned with identifying reproducible and discriminating
attributes of the friction ridge detail which may be used for

Contents lists available at ScienceDirect

Forensic Science International

journal homepage: www.elsevier .com/ locate / forsc i int
* Corresponding author.
E-mail address: henry.swofford@unil.ch (H. Swofford).

http://dx.doi.org/10.1016/j.forsciint.2021.110703
0379-0738/© 2021 The Author(s). Published by Elsevier B.V. This is an open access ar
comparison and evaluation against a known source impression.
The ability for the analyst to reliably detect these attributes
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.forsciint.2021.110703&domain=pdf
mailto:henry.swofford@unil.ch
http://dx.doi.org/10.1016/j.forsciint.2021.110703
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.forsciint.2021.110703
http://www.sciencedirect.com/science/journal/03790738
www.elsevier.com/locate/forsciint


d
c
i
a
a
i
t
q
“

T
i
c
o
c
r
a
t
a
a
m
r
s
m
u
r
n
t
i
w

r
a
m
m
i
s
c
u
m
f
e
e
m
t
p
T
r
t
a
l
p
q

f
p
s
d
d
fi

2
i
a
m

l
e

H. Swofford, C. Champod, A. Koertner et al. Forensic Science International 320 (2021) 110703
epends heavily on the clarity of the impression. Generally, as the
larity of an impression increases, analysts’ have more confidence
n their interpretation of the location, orientation, type, and spatial
rrangement of features. Additionally, as the number of interpret-
ble features increases, the discriminating strength of the
mpression as a whole is considered to increase as well. Once
he features have been detected, the analyst will assess the overall
uality of the impression and make a determination of the
suitability” or “value” for further comparison and evaluation [2].
his determination is not based on an empirical standard; rather, it
s a subjective determination made by the analyst on a case-by-
ase basis and depends on whether the analyst believes the quality
f the impression is sufficiently reproducible and selective to be
ompared to a known source and render a particular conclusion
egarding the potential source of the impression. Consequently,
ssessments made during friction ridge examinations are suscep-
ible to variation from one analyst to another (inter-analyst) as well
s by the same analyst from one examination to another (intra-
nalyst). When considering borderline impressions which contain
arginal quality or quantity of features, these variations often

esult in differences in the analysis conclusion. In the broad
pectrum, however, while the lack of empirical standards and
easurements do not necessarily imply the practice as a whole is
nreliable or fraught with error, it does raise questions as to how
eliable the evidence is for the case at hand. Thus, there is a critical
eed for the friction ridge community to move towards integrating
ools to quantitatively assess the clarity and quality of friction ridge
mpression details to standardize and provide an empirical
arrant for analysts’ claims [1,3–5].
Over the years, there have been several notable efforts by

esearchers in which quantitative tools were introduced for
ssessing the quality of friction ridge impressions [6–19]. The
ajority of these efforts can be classified as suitability prediction
odels, which provide a predictive estimate of whether the

mpression is suitable for some intended purpose or utility, such as
uitability for identification or exclusion purposes during manual
omparisons or, more often, for predictions of search performance
sing automated fingerprint identification systems (AFIS). Early
odels are described by Alonso-Fernandez et al. (2005) and all

ocus on calculating quality as a means of predicting AFIS feature
xtraction or matcher performance. Most of the early methods
ntailed a variety of different image processing techniques, such as
easuring ridge frequency, ridge thickness, and ridge to valley

hickness ratio, using Gabor filters to increase contrast, measuring
ixel intensity differences, two-dimensional Discrete Fourier
ransform (DFT), and neural network classifiers to classify local
egions as “good” or “bad” quality [6]. Alonso-Fernandez et al. note
hat all of the various methods tend to behave similarly to one
nother except for the method based on neural network classifiers,
ikely due to the low number of quality labels used for training, and
ropose the concept of integrating the various algorithms into a
uality-based multimodal authentication system for future works.
In 2007, Nill developed Image Quality of Fingerprint (IQF) as a

reeware software application designed to predict AFIS matching
erformance, alert operators to poor quality enrollment of known
ource standards or aid in performance assessments of capture
evices [7]. The approach developed by Nill relies on the two-
imensional, spatial frequency power spectrum of the digital
ngerprint image to produce a global assessment of quality [7]. In
008, Fronthaler et al. studied the orientation tensor of fingerprint

international, and private sector laboratories using overlapping
subsets of 1090 latent and exemplar fingerprint images to identify
key features that will guide the development of automated quality
metric algorithms in future works [9]. Up to this point, nearly every
other method was focused entirely on optimizing AFIS matching
performance or developing quality metrics to predict match
performance rather than attempting to understand what was
considered by human analysts during manual examinations. From
the survey, Hicklin et al. note there is general concurrence of
human assessments of local and overall image quality, but enough
variation between examiners to result in differing conclusions and
demonstrate the need to provide uniform definitions of quality and
automated assessment tools to standardize the practice [9].

In 2012, two additional methods were proposed: both focused
on optimizing or predicting AFIS match performance. While earlier
methods tended to focus on biometric enrollments and known
source impressions, these were geared more towards latent
fingerprint impressions. Murch et al. (2012) proposed a method
for automated feature extraction to improve the performance of
AFIS searches of latent fingerprint impressions using image
segmentation to differentiate the foreground impression from
background noise [10]. Yoon et al. (work presented in 2012, but
published in 2015) proposed a method for assessing latent
fingerprint image quality using the product of the average ridge
clarity bounded within the convex hull enclosing all annotated
minutiae and total number of minutiae [11]. The calculation of
average ridge clarity involved the application of two-dimensional
Fourier analysis to a pre-processed contrast enhanced image.
Although Yoon et al. was focused specifically on latent impressions,
the quality algorithm was still geared towards predicting AFIS
matcher performance and thus not necessarily tailored to
attributes considered during human examinations [11,12].

In 2013, three additional approaches were introduced, which
begin to steer focus towards latent fingerprint image clarity
relevant during human examinations compared to prior methods.
Hicklin et al. (2013) developed Latent Quality Assessment Software
(LQAS), which applies a variety of image processing algorithms to
assess the clarity of friction ridges in localized regions [13,14]
(LQAS [13] was later enhanced and combined with Universal Latent
Workstation (ULW). Within ULW, it is referred to as LQMetric.
Details related to LQMetric development are provided by Kalka
et al. 2020 [14]). Based on the clarity assessment, the software then
applies a color-coded clarity map which corresponds to the color
codes within the American National Standards Institute/National
Institute of Standards and Technology (ANSI/NIST) 2011 standard
“Data Format for the Interchange of Fingerprint, Facial & Other
Biometric Information” [15] for simple interpretation and a
standardized framework for documentation [13,14]. Sankaran
et al. (2013) propose a method which assesses ridge clarity and
quality [16]. The former (Hicklin et al.) refers to the visual
discernibility of the features irrespective of the presence or
absence of features and the latter (Sankaran et al.) refers to the
quantity and number of features present in a given local region (i.e.
a predictor of AFIS matching performance). The local ridge clarity
assessment is based on average eigenvalues from decomposed
structure tensors following image smoothing using a Gaussian
filter [16]. A local clarity map is generated as a result of the clarity
assessment similar to that of Hicklin et al. (2013) [9]. The ridge
quality assessment is calculated as the kurtosis of the weighted
average histogram based on the local clarity map described
mages to quantify signal impairments like noise, lack of structure,
nd blur with the help of symmetry descriptors when combining
ultiple AFIS matchers for improved matching performance [8].
In 2011, Hicklin et al. [9] attempted to understand how human

atent fingerprint analysts assess fingerprint quality by surveying
ighty-six latent print examiners from federal, state, local,
2

previously along with the number of features present within a local
region [16]. Pulsifer et al. (2013) propose a method for calculating
overall quality based on a semi-automated assessment of the local
clarity maps generated from LQAS developed by Hicklin et al.
(2013) [13,14] to produce an alternative way of calculating the
overall quality of the impression [17].



H. Swofford, C. Champod, A. Koertner et al. Forensic Science International 320 (2021) 110703
In 2014, Kellman et al. proposed a number of quantitative
measures of image characteristics related to image quality metrics,
such as intensity and contrast information, as well as measures of
information quantity, such as total fingerprint area, to calculate
image quality and predict analyst performance and perceived
difficulty during comparisons by human analysts [18]. The work by
Kellman et al. indicates a shift towards establishing quality metrics
geared towards predicting human analyst performance rather than
tailored specifically to predicting AFIS match performance. More
recently in 2018, with a similar intent as Hicklin et al. [13,14] and
Kellman et al. [18], Chugh et al. proposed a crowdsourcing
framework to understand the underlying bases of suitability
determinations by fingerprint analysts and use it to develop an
automated means of predicting suitability determinations [19].

While there have been a number of different models proposed
over the years, the majority of them are geared entirely towards
optimizing or predicting AFIS match performance rather than
focused on assessing local ridge clarity (discernibility of feature
data) and predicting human performance using image quality
attributes considered by human analysts during manual compar-
isons. Consequently, these types of predictive models are often
based on the aggregate of qualitative and quantitative attributes of
the entire impression to provide a single estimate of utility or
quality. These approaches often lack transparency and often do not
necessarily correspond to the same features considered by human
analysts during traditional examinations. The motivation behind
this focus is largely driven by industry desires to optimize the
performance of AFIS in a “lights-out” environment. Indeed, this
focus is important for the broader biometric industry; however, the
narrow focus on AFIS platforms leaves a gap as it relates to manual
examination and interpretation processes by human analysts in
the traditional forensic setting. Thus, the need remains for the
development and implementation of tools capable of quantita-
tively assessing the clarity of friction ridge detail in a transparent
and objective manner within in a simple, accessible, and user-
friendly software application that can be easily integrated into
friction ridge examination practices. Such a tool would offer
significant improvements to traditional practices and permit
laboratories to establish standardized suitability criterion and
provide empirical substantiation to analysts’ opinions.

This paper presents a method, developed as a stand-alone
software application, DFIQI (“Defense Fingerprint Image Quality
Index”), designed to measure the clarity of friction ridge
impression minutiae and provides a quantitative assessment of
the quality of an impression for comparison and evaluation
purposes. Although this method builds upon general approaches
described earlier and considers well established means of
assessing image clarity, it provides a simple and novel approach
for quantifying the quality of friction ridge impressions. Further,
having been developed as an automated stand-alone software
application, this method is accessible to the forensic community1

thereby providing the capability for laboratories to ensure the
quality of friction ridge details are sufficient to permit reliable
interpretations and move toward standardizing and improving
traditional practices. In the sections that follow, this paper
provides a brief overview of the calculations performed by the
method followed by more detailed discussions regarding its
development, performance and validation. Limitations of the
method and considerations for policy and procedure when applied
to forensic casework are discussed as well as implications for

2. Materials & methods

2.1. Background

In general terms, the method assesses the clarity of friction
ridges in localized “regions of interest” (ROIs) immediately
surrounding the x,y location of features identified in the
impression. Features can be identified by manual annotation or
using automated feature extraction applications (followed by
human-expert verification). Each region of interest is assessed
using five variables (described below) consisting of various
measures of friction ridge image clarity and quality. The five
variables were selected by the authors based on domain expertise,
reduced mathematical complexity, and algorithmic transparency.
The output of each variable measured is normalized by a scoring
function and combined to create a single quantitative value
representing the clarity and quality of the friction ridges within the
localized ROI. Each local ROI score is then combined to a single
quantitative value representing the quality of the ROIs combined
across the entire impression, which accounts for both the quality
and quantity of detail in the impression.

Once the x,y coordinates are identified for the features in the
impression (e.g. by an analyst marking the location), the
application creates an inverted 8-bit digital grey-scale copy of
the image on which all subsequent digital processing is performed.
For each feature, a 2.54 mm � 2.54 mm (i.e. 0.1-inch � 0.1-inch)
square ROI, centered on the location of the feature, is applied to the
image and cropped (as a copy). The size of the ROI was selected to
ensure it is small enough to represent a local region of the
impression immediately surrounding a feature, but large enough
to cover multiple ridges and enable a meaningful discrete Fourier
transform related to the spatial frequency variable (described
below); however, it was not subject to formal parameter
optimization methods Each ROI is large enough to generally
contain between four and seven ridges, depending on the width
and orientation of the ridges. The five variable measures are taken
from the cropped ROI to calculate the clarity and quality of the
ridge detail immediately surrounding each individual feature in
the impression.

Before the variable values are calculated, each ROI is split into
two separate images to separate the “ridges” from the “furrows” (or
more appropriately referred to as “signal” from “background”) by
applying adaptive mean thresholding to the pixel intensity values
with a local neighborhood radius of 0.38 mm. The 0.38 mm radius
was selected based on ad hoc testing and not subject to formal
parameter optimization methods. Unlike simple thresholding
methods, adaptive thresholding determines the threshold for a
pixel based on a small region around it resulting in different
thresholds for different regions of the same image. This generally
provides greater segmentation accuracy as illumination conditions
may vary throughout an image. Fig. 1 illustrates the results of
applying adaptive thresholding to a cropped ROI.

2.2. Variables

Using the cropped and segmented ROIs, the following measures
of clarity and quality are calculated:

� Signal Percent Pixels Per Grid (S3PG): This variable calculates the

future integrations with other tools to strengthen the foundations
of friction ridge examination in general.
1 The software application can be accessed at: https://doi.org/10.5281/
zenodo.4426344.

3

percentage of pixels that have been segmented as “signal”
compared to the total number of pixels available in the ROI. For a
high-quality impression of friction ridges, an approximate value
of 50, accounting for approximately 50% of total pixels
segmented as “signal,” is expected. As S3PG values deviate from
the expected output of 50 in one direction or another, it suggests

https://doi.org/10.5281/zenodo.4426344
https://doi.org/10.5281/zenodo.4426344
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there are distorting artifacts in the ROI that may interfere with
accurate detection of friction ridge detail.

 Bimodal Separation (BS): This variable calculates an index value
summarizing the extent to which two histograms of pixel
intensity values are separated from one another. Using the pixel
intensity values of those segmented as “signal” and those
segmented as “background”, the index is calculated using the
formula below. As the difference between the mean values
increase and the standard deviations decrease between the
segmented images, the value of the bimodal separation index
increases, which indicates greater contrast between pixels
classified as “signal” versus “background”. On the other hand,
as the difference between the mean values decrease and the
standard deviations increase between the segmented images,
the value of the bimodal separation index decreases, which
indicates lower contrast and may interfere with accurate
detection of friction ridge detail. The bimodal separation variable
is calculated using the formula in equation 1.

x ¼ S � B
2 sS þ sBð Þ

Equation 1: The formula for which the bimodal separation
ariable is calculated for each ROI.

 Acutance (ACUT): This variable calculates an index value
summarizing the natural log of the mean acutance across the
entire ROI and is applied to the non-segmented copy of the
image. Acutance is described as the physical characteristics that
underlay the subjective perception of “sharpness” in an image. In
general terms, the acutance is calculated as the mean squared
difference between a center pixel and its eight neighboring
pixels in a 3 � 3 window iteratively calculated across an entire
image. As the difference of pixel intensities increase, the
perceived sharpness of the objects represented in the image
also increase. This perceived increase of sharpness is represented
by a higher acutance index value. As the acutance index value
decreases, the perceived sharpness of the image decreases
resulting in lower contrast which may interfere with accurate
detection of friction ridge detail. The acutance variable calcula-
tion routine is illustrated in Figs. 2a and b and stated in equation
2 (adapted from Choong et al. [20]).

Equation 2: The formula for which acutance is calculated for
each ROI.

� Mean Object Width (MOW): This variable calculates the mean
width of objects segmented as “signal” in the ROI. The term
“objects” refers to a set of contiguously thresholded pixels within
the “signal”. The width of each object is calculated by fitting an
ellipse and measuring the width of the minor axis. In the context
of friction ridge impressions having perfect quality, those pixels
thresholded as “signal” would correspond to separate and
distinct “objects” in the image, representing separate friction
ridges having nearly uniform and predictable widths. As the
values for the mean object width deviate from the expected
width of friction ridges in one direction or another, it suggests
there are distorting artifacts in the ROI that may interfere with
accurate detection of friction ridge detail. The manner in which
the mean object width variable is calculated is illustrated in
Figs. 3a and b.

� Spatial Frequency (SF): This variable calculates the spatial
frequency of the ridges in the non-thresholded ROI using the
two-dimensional discrete Fourier transform. For high-quality
impressions of friction ridges, the ridges have been shown to
have a predictable spatial frequency of approximately 2.1 ridges
per millimeter for males and 2.4 ridges per millimeter for
females [21] (combined mean of approximately 2.25 ridges per
millimeter). As the spatial frequency values deviate from the

ig. 1. The image on the left represents the original ROI (the darker color pixels
orrespond to friction ridges). The image in the center represents the binary mask of
he segmented ROI for which the black areas correspond to pixels thresholded as
signal”. The image on the right represents the binary mask of the segmented ROI
r which the black areas correspond to pixels thresholded as “background” (i.e. the
age on the right is the inverse of the image in the center). NOTE: Actual size of
ages are 2.54 mm � 2.54 mm. Images are enlarged and pixels interpolated for

lustration.

Fig. 2. a The 3 � 3 window representing a neighborhood of pixel values (the center
pixel surrounding by its 8 contiguous neighbors). 2b The external box is a simplistic
illustration representing the entire ROI containing p � p pixels (e.g. for an image
resolution of 500 pixels per inch, p = 50 pixels. The inner box is a simplistic
illustration representing the inner window of p-1 � p-1 pixels for the ROI in which
every pixel serves as the center pixel of the scrolling 3 � 3 pixel window. The 3 � 3
window at the top left is a simplistic illustration of the 3 � 3 window represented in
Fig. 2a.
x ¼ ln

P P8
n¼1 Ic � Inð Þ2

� �
8 p � 2ð Þ2

0
@

1
A

4

expected output of approximately 2.25 ridges per millimeter in
one direction or another, it suggests there are distorting artifacts
in the ROI that may interfere with accurate detection of friction
ridge detail. The two-dimensional discrete Fourier transform for
a sample ROI is shown in Figs. 4a and b to illustrate how the
system calculates this variable.
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2.3. Local quality score

As described earlier, the five variable values are calculated for
each ROI in an image. Let x_i denote the ith variable, with i = 1 . . . 4
corresponding to S3PG, BS, MOW, and SF, respectively, and x_5
denote ACUT. The raw variable values for S3PG, BS, MOW, and SF
are each normalized and scored using a symmetrical distribution
scaled between 0 and 1 as provided by f(x) in equation 3 below. A
symmetrical distribution is used for these variables since a value
that deviates too far on either side of the expected value indicates
the presence of distorting artifacts in the ROI that may interfere
with accurate detection of friction ridge detail.

f xð Þ ¼ e
� x�m̂ð Þ2

2ŝ2

Equation 3: Scoring function for raw variable values S3PG,
Bimodal Separation, Mean Object Width, and Spatial Frequency.
The scoring function provides a maximum value of 1 if the raw
variable value is equal to the expected value (m̂) (i.e. location
parameter). As the raw variable value deviates from the expected
value on either side, the score is reduced and trends toward 0 at a
rate determined by the scale parameter (ŝ).

The raw variable value for ACUT is provided by a simple logistic
cumulative distribution (scaled between 0 and 1) as provided by g
(x) in equation 4 below. A cumulative distribution is used for this
variable since only values that are less than the expected value
indicates the presence of lower sharpness and contrast of ridges in
the ROI that may interfere with accurate detection of friction ridge

if the raw variable value is equal to the expected value (m̂) (i.e.
location parameter). As the raw variable value deviates from the
expected value (lower acutance values), the score is reduced and
trends toward 0 at a rate determined by the scale parameter (bs).
The Acutance is scored on a cumulative distribution since lower
quality is only manifest with lower acutance values.

The input parameters for the scoring functions for each variable
consist of the location parameter (i.e. mean raw variable value) and
scale parameter (e.g. standard deviation of the raw variable value)
empirically estimated from a reference dataset. The reference
dataset consisted of 1373 ROIs selected from pristine quality
exemplar impressions. The impressions in this dataset were
deposited under controlled conditions using a mixture of
traditional ink and Livescan device. Table 1 provides the input
parameters for the scoring function related to each variable.

The five normalized variable values are then combined to create
a mean univariate quantitative score summarizing the clarity and
quality of the feature represented in the ROI on a scale from 0 to 1
(higher values indicate higher clarity and quality of the friction
ridges in the ROI). This ROI score (i.e. Local Quality Score, or “LQS”)
provides a proxy estimate of the quality of the feature contained
within the ROI on the basis of the clarity of the friction ridge detail
immediately surrounding it. The LQS is calculated using the

Fig. 3. a The image on the left represents the original ROI (the darker color pixels
correspond to friction ridges). The image on the right represents the mask of the
segmented ROI for which the light grey areas correspond to pixels thresholded as
“signal”. The dark grey borders represent the borders around groups of contigous
pixels represenging the various “objects” in the impression. NOTE: Actual size of
images are 2.54 mm � 2.54 mm. Images are enlarged and pixels interpolated for
illustration. 3b An ellipse is fit to each distinct “object” in the image (ellipses
overlaid on the origial image of friction ridges). The object width is calculated by
measuing the width of the minor axis of each ellipse. In this example, two ridges
appear connected together due to smudging in the impression resulting in a larger
mean object width for the ROI; thus indicating the presence of distorting factors
which may interfere with accurate interpretation of friction ridge detail. NOTE:
Actual size of image is 2.54 mm � 2.54 mm. Images are enlarged and pixels
interpolated for illustration.

Fig. 4. a The image on the left represents the original ROI (the darker color pixels
correspond to friction ridges). The image on the right represents the discrete two
dimensional Fourer transform of the image on the left. NOTE: Actual size of images
are 2.54 mm � 2.54 mm. Images are enlarged and pixels interpolated for
illustration. 4b A three-dimensional representation of the pixel intensity values of
the discrete two-dimensional Fourier transform image in Fig. 4a. The vertical axis
represents the pixel intensity values corresponding to lighter colored pixels in the
Fourier transform image in Fig. 4a. The tallest point on the vertical axis in the middle
represents the DC-value for the image. The second two tallest points on each side of
the DC-value represent the spatial frequency of the ridges in the image (indicated by
the arrows).
detail.

g xð Þ ¼ 1

1 þ e
�x�m̂bs

Equation 4: Scoring function for the raw variable value
Acutance. The scoring function provides a maximum value of 1
5

formula below:

LQS ¼
P5

i¼1 f xð Þi
5

Equation 5: Local Quality Score (LQS) function – calculated for
each ROI as the mean of the normalized variable scores, where f(x)i
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s the normalized variable score for i-th function in the set
ontaining the normalized variable scores for all 5 variables.
The LQS value is then used as a basis to categorize and color-

ode the quality of the feature as a graphical output to the user (e.g.
igh, medium, and low) in terms that align with subjective
eterminations by human analysts, such as that proposed by
angenburg & Champod (2011) [22]. Features color-coded as green
enerally indicate areas of high quality, features color-coded as
ellow generally indicate areas of medium quality, and features
olor-coded as red generally indicate areas of low quality.

.4. Global quality scores

Three different Global Quality Score (GQS) values are calculated,
ach of which represent a summary of the overall quality of the
mpression for different purposes: to predict analysts’ determi-
ations of “value”, “complexity”, and “difficulty” as proposed by
ldridge et al. (2020) [23] and as part of the Analysis phase of the
xamination methodology. For all three prediction categories
value, complexity, and difficulty), the GQS is calculated as a
ultinomial combination of two variables: (a) LQSsum – the sum of
ll LQS values, and (b) nFEAT – the total quantity of features
dentified in the impression. Taken together, these provide
xplainable quantitative representations and variables of the
verall quality of the impression for manual comparison purposes.
The multinomial coefficients for each outcome class (value,

omplexity, and difficulty) were derived using a multinomial
egression model provided by the nnet package in R [24] against a
raining/test-dataset of feature measurements from impressions
or which latent print examiners previously analyzed and
ategorized based on their “value”, “complexity”, and “difficulty”
or comparison. The multinomial model was selected after testing

 range of machine learning techniques with the variables LQSsum
nd nFEAT (naïve based classifier, tree-based classifiers, discrimi-
ant analysis techniques, neural networks and support vector
achines). Overall, the multinomial regression offers a competi-

ive accuracy while maintaining easy explainability (see Supple-
ental Appendix for raw model diagnostics and uncertainty
alues). The training-dataset was derived as a random 50/50
raining-test split obtained from the full dataset provided by
ldridge et al. (2020) [23]. The full dataset consisted of a total of
241 determinations made by 116 analysts rendering “value”,
complexity”, and “difficulty” decisions for each image they
iewed from a set of 100 different latent print impressions – each
articipant was provided a set of approximately 30 impressions to
nalyze, resulting in each impression being analyzed by between
6 and 41 different analysts. The impressions were generated

models (1621 responses) and the other half of this dataset was
used to test the models (1620 responses) described by GQS Test-
Dataset 1 below. It should be noted that the model was trained and
tested using the results of each examiner’s individual observations
and judgments of the impressions rather than artificially
combining them. Ground truth for these types of judgments is
non-existent. Although consensus judgments could be declared as
a surrogate to ground truth for each image, the examiners’
observations for which their subjective judgments are based are
variable which would require artificially aggregating examiners’
judgments and disconnecting their individual observations from
their individual judgments. As a result, the authors believe a model
that is trained using individual examiners’ observations and
resulting judgments is appropriate in this context. The output of
the model, effectively, then reflects a proxy consensus of
examiners’ judgments for a given input in a specific case
impression. Table 2a, Table 2b, and Table 2c provide the
coefficients related to the multinomial models from the training

able 1
put parameters for the scoring functions for each variable.

Variable Location
Parameter (m̂)

Scale Parameter
(ŝ or ŝ)

S3PG 51.408 4.134
Bimodal Separation 0.843 0.147
Acutance 6.869 0.532
Mean Object Width 1.383 0.391
Spatial Frequency 2.078 0.397

Table 2a
Multinomial coefficients for each outcome class probability (no-value, value for
exclusion only, value for identification) of the “value” determination. Note: In
Eldridge et al. [23], participants were given the following response choices: “no
value”, “some probative or investigative value but insufficient for identification or
exclusion”, “value for exclusion only”, “value for identification only”, “value for both
identification and exclusion”. Responses of “some probative or investigative value
but insufficient for identification or exclusion” were categorized as “value for
exclusion” to represent the middle bin of the value spectrum. Responses of “value
for both identification and exclusion” and “value for identification only” were
categorized as “value for identification”.

“Value” coefficients Intercept LQSsum nFEAT

No Value 0.000 0.000 0.000
Value for Exclusion �1.736 �0.051 0.277
Value for Identification �6.042 0.495 0.726

Table 2b
Multinomial coefficients for each outcome class probability (highly complex,
complex, non-complex) of the “complexity” determination. Note: In Eldridge et al.
[23], participants were given the following response choices: “no value”, “of value,
complex”, “of value, non-complex; requiring documentation”, and “of value, non-
complex; self-evident”. Responses of “of value, non-complex; requiring documen-
tation” and “of value, non-complex; self evident” were both categorized as “non-
complex”. Responses of “no value” were re-labeled “highly complex” to represent
the extreme end of the complexity spectrum.

“Complexity” coefficients Intercept LQSsum nFEAT

Highly Complex 3.325 �0.100 �0.459
Complex 0.000 0.000 0.000
Non-Complex �1.781 0.741 �0.025

Table 2c
Multinomial coefficients for each outcome class probability (high, medium, low) of
the “difficulty” determination.

“Difficulty” coefficients Intercept LQSsum nFEAT

High 0.000 0.000 0.000
Medium �1.896 0.289 0.125
Low �3.071 0.965 �0.004
uring the course of normal casework at a large metropolitan
olice laboratory using standard powder processing and lifting
echniques. All participants were practicing latent print examiners
ecruited by several outreach methods, such as email distribution
ists, presentations given at professional educational meetings,
nd professional contacts. Half of this dataset was used to train the
6

partition (see Supplemental Appendix for raw model diagnostics
and uncertainty values on the coefficients). Each multinomial
model provides a probability of class inclusion (ranging from 0.00
to 1.00) for each outcome class (e.g., for the Value determination
the three outcome classes are no-value, value for exclusion only,
and value for identification).



H. Swofford, C. Champod, A. Koertner et al. Forensic Science International 320 (2021) 110703
Recognizing each class represents an outcome along a spectrum
(e.g. for the “value” determination: No Value represents the left-
most extreme and Value for Identification represents the right-
most extreme) and the sum across all classes equals 1.00, we can
combine to create single values representing the GQS for each
determination (value, complexity, difficulty) by subtracting the
probability of class inclusion representing the left-most extreme
from the probability of class inclusion representing the right-most
extreme to produce a number ranging from �1.00 to 1.00, where
higher values indicate stronger support for “value for identifica-
tion”, “non-complex”, and “low difficulty” and lower values
indicate stronger support for “no value”, “highly complex”, and
“high difficulty”. The GQS values for each determination are
calculated using the formulae below:

ValueGQS ¼ p VIDð Þ � p NVð Þ
Equation 6: GQS function for Value determination – calculated

by subtracting the probability of class inclusion for No Value
outcome (NV) from the probability of class inclusion for Value for
Identification outcome (VID). Values near -1.00 indicate no-value
determinations, values near 1.00 indicate value for identification
determinations, and values near 0 indicate value for exclusion only
determinations (or inconclusive determinations in lieu of value for
exclusion only).

ComplexityGQS ¼ p NCð Þ � p HCð Þ
Equation 7: GQS function for Complexity determination –

calculated by subtracting the probability of class inclusion for
Highly Complex outcome (HC) from the probability of class
inclusion for Non-Complex outcome (NC). Values near -1.00
indicate no-value determinations, values near 1.00 indicate non-
complex determinations, and values near 0 indicate complex
determinations.

Dif f icultyGQS ¼ p Lð Þ � p Hð Þ
Equation 8: GQS function for Difficulty determination –

calculated by subtracting the probability of class inclusion for
High difficulty outcome (H) from the probability of class inclusion
for Low difficulty outcome (L). Values near -1.00 indicate high
difficulty determinations, values near 1.00 indicate low difficulty
determinations, and values near 0 indicate medium difficulty
determinations.

ROC curves will be used to illustrate model performance. The
associated areas under the curve (AUC), and confidence intervals
have been computed taking advantage of the pROC package [25].

2.5. Method performance

The performance of the method was evaluated in different
conditions capturing performance characteristics both locally and
globally. The local performance characteristics were evaluated in
terms of (i) the ability of the LQS value to accurately distinguish
between the extreme conditions of “good” and “bad” quality ROIs
and (ii) the ability of the LQS value to predict analysts’ subjective
determinations of feature quality according to the GYRO annota-
tion scheme proposed by Langenburg & Champod (2011) [22]. The
global performance characteristics were evaluated in terms of the
ability of the GQS values to distinguish between analysts’
subjective determinations of “value”, “complexity”, and “difficulty”

ridge detail within the ROIs change. This was evaluated using
measurements from two different test-datasets:

(1) LQS-Test-Dataset-1: This dataset consists of 867 “good” quality
ROIs selected from high quality regions of exemplar friction
ridge impressions and a dataset of 3816 “bad” quality ROIs
selected from low quality regions of latent lift cards submitted
under operational conditions as attempts to lift latent images
from a variety of different surfaces during normal forensic
casework. The “bad” quality ROIs represented impressions
with excessive smudging, indiscernible ridge detail, back-
ground interference and artifacts, and related factors impact-
ing reliable interpretation of friction ridges, yet still having
artifacts present bearing reasonable contrast and clarity but
lacking morphological representations of friction ridge detail.
The purpose of this dataset is to evaluate how well the LQS
values distinguish between the extremes of “good” and “bad”
quality ROIs collected under operational conditions.

(2) LQS-Test-Dataset-2: This dataset consists of 4480 ROIs con-
taining features annotated as “high confidence” (i.e. green) and
920 ROIs containing features annotated as “medium confi-
dence” (i.e. yellow) by practicing latent print examiners
according to the GYRO annotation scheme proposed by
Langenburg & Champod (2011) [22] across 300 different
impressions deposited using normal handling of objects and
developed using common latent print processing methods
representative of typical casework. This dataset was obtained
from John & Swofford (2020) [26]. The purpose of this dataset
is to evaluate how well the LQS color-coded quality categories
correspond to fingerprint experts’ subjective assessment of
feature confidence (“high” confidence vs. “medium” confi-
dence).

2.5.2. Global performance characteristics
The global performance characteristics were evaluated to

understand the ability of the method to predict human analysts’
subjective assessments of whether impressions are considered
“suitable” or “of value” as well as assessments of “complexity” and
“difficulty” for comparison purposes. These were evaluated using
measurements from two different test-datasets:

(1) GQS-Test-Dataset-1: This dataset represents the test fraction
derived as a random 50/50 training-test split of the full dataset
obtained from Eldridge et al. (2020) [23]. The full dataset
consisted of a total of 3241 analysts’ determinations of “value”,
“complexity”, and “difficulty” and documentation of features
across a set of 100 different latent print impressions by
approximately 116 different participants – each participant
was provided a set of approximately 30 impressions to analyze
resulting in each impression being analyzed by between 26 and
41 different analysts. The impressions were generated during
the course of normal casework at a large metropolitan police
laboratory using a variety of standard processing techniques.
All participants were practicing latent print examiners
recruited by several outreach methods, such as email
distribution lists, presentations given at professional educa-
tional meetings, and professional contacts. Half of this dataset
was used to train the models (1621 responses) and the other
half of this dataset was used to test the models (1620
from test-datasets of feature measurements from impressions for
which latent print examiners previously analyzed and categorized.

2.5.1. Local performance characteristics
The local performance characteristics were evaluated to

understand the behavior of the system as the clarity of friction
7

responses). The purpose of this dataset is to evaluate how
well the GQS values correspond to subjective determinations of
value, complexity, and difficulty when examined under
pseudo-operational conditions.

(2) GQS-Dataset-2: This dataset consists of 605 latent impressions
collected from casework during the course of routine
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operations by fingerprint experts in a federal crime laboratory
in the United States for which fingerprint experts conducted
examinations and identified the impressions to corresponding
reference standards. All impressions in this dataset were
determined to be “suitable” or “of value” for identification
purposes. The purpose of this dataset is to evaluate the
distribution of GQS values and implications thereof when
applied to impressions derived from actual casework and
assessed under normal operational conditions.

. Results & discussion

.1. Local performance characteristics

The local performance characteristics were evaluated on the
asis of how well the LQS values were able to distinguish between
he extremes of “good” and “bad” quality ROIs collected under
perational conditions using LQS-Test-Dataset-1 and how well the
QS color-coded quality categories correspond to fingerprint
xperts’ subjective assessment of feature confidence (“high”
onfidence vs. “medium” confidence) using LQS-Test-Dataset-2.
igs. 5a and b illustrates the degree of separation observed
etween the extremes of “Good” and “Bad” quality ROIs using the
QS value.
From Figs. 5a and b, we see remarkable separation between the

wo extremes of “Good” and “Bad” quality ROIs. Although these
esults may be expected for this dataset since they represent the
xtreme ends of the spectrum, it establishes an important baseline
hich validates the relevance of the input variables which
omprise the LQS value and its ability to distinguish between
igh-quality friction ridge impressions and low-quality non-
riction ridge artifacts. Further, from these data, we can establish

thresholds for distinguishing between “high”, “medium”, and
“low” color-coded bins categorizing ROI quality as an overlay
output to the user. For this purpose, LQS values between 0.35 and
1.00 are color-coded green (high quality), LQS values between 0.20
and 0.35 are color coded yellow (medium quality), and LQS values
between 0.00 and 0.20 are color-coded red (low quality). Using this
color-coding scheme, Table 3 provides the distribution of “Good”
and “Bad” quality ROIs categorized as green, yellow, and red.

Having established the baseline performance of the LQS values
to distinguish between “Good” and “Bad” quality ROIs and a
threshold for categorizing as “high”, “medium”, or “low” quality
(i.e. green, yellow, red), we can use LQS-Test-Dataset-2 to evaluate
how well the color-coding output correspond to fingerprint
experts’ subjective assessment of feature quality (“high” quality
vs. “medium” quality due to insufficient annotations of “low”

quality features in the dataset). Table 4 demonstrates the
consistency between automated predictions of quality using the
LQS color-code scheme and experts’ subjective judgments.

From Table 4, we see that approximately 94% of the features
annotated by experts as green (high quality) were categorized by
the LQS color-code scheme as either green (69%) or yellow (25%).
Approximately 6% of the features annotated by experts as green
were categorized by the LQS color-code scheme as red. Of the
features annotated by experts as yellow (medium quality),
approximately 87% were categorized by the LQS color-code scheme
as green (49%) or yellow (38%). Approximately 13% of the features
annotated by experts as yellow were categorized by the LQS color-
code scheme as red. Although not perfect correspondence between
green vs. green and yellow vs. yellow (which may be expected
given the variable nature of experts’ judgements), these results
indicate reasonable agreement between experts’ subjective assess-
ments of feature quality and LQS color-coded classifications as it
relates to general groupings of medium or high-quality features.
Taken together, among the 5400 total features annotated as either
green or yellow by experts’ subjective judgments, approximately
93% were categorized as either green or yellow by the LQS color-
code scheme. Recognizing the variability in subjective judgments

Table 3
Number of LQS values color-coded as green, yellow, and red compared for “Good”
and “Bad” quality ROIs using LQS-Test-Dataset-1. LQS values between 0.35 and 1.00
are color-coded green (high quality), LQS values between 0.20 and 0.35 are color
coded yellow (medium quality), and LQS values between 0.00 and 0.20 are color-
coded red (low quality).

ROI Quality Good Bad Total
LQS Color Code

Green 862 318 1180
Yellow 5 1892 1897
Red 0 1606 1606
Total 867 3816 4683

Table 4
Number of LQS values color-coded as green, yellow, and red compared to experts’
subjective judgments of feature quality / confidence using GYRO [22] using LQS-
Test-Dataset-2. LQS values between 0.35 and 1.00 are color-coded green (high
quality), LQS values between 0.20 and 0.35 are color coded yellow (medium
quality), and LQS values between 0.00 and 0.20 are color-coded red (low quality).
NOTE: As discussed by John & Swofford (2020) [26] from which this dataset was
obtained, experts mostly only annotated features as green and yellow. Experts
rarely annotated features as low quality (red), thus those data were insufficient for
this assessment.
ig. 5. a Boxplot of LQS values for “Bad” (n = 3816) and “Good” (n = 867) quality ROIs
om LQS-Test-Dataset-1. 5b Receiving Operating Characteristic (ROC) curve of LQS
alues for “Bad” (n = 3816) and “Good” (n = 867) quality ROIs from LQS-Test-Dataset-
. The area under the curve (AUC) is 99.7% with a 95% confidence interval of (99.6% -
9.8%).

Expert Judgement Green Yellow Total
LQS Color Code

Green 3077 450 3527
Yellow 1119 348 1467
Red 284 122 406
Total 4480 920 5400

8
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of feature quality (e.g. green-yellow or yellow-red), the most
significant contribution of the LQS color-code scheme is the ability
for it to provide a standardized framework for establishing
consistency between examiners related to the relative contribu-
tion of features for comparison and flag conditions warranting
additional quality assurance review such as those situations where
examiners’ judgments and the LQS color-code scheme contradict
each other on the extreme ends of the spectrum (e.g. green vs. red).
While the local performance characteristics are important, the
global performance characteristics have the most significant
impact on the ultimate outcome of the examination.

3.2. Global performance characteristics

The global performance characteristics were evaluated on the
basis of how well the GQS values correspond to analysts’ subjective
assessments of “value”, “complexity”, and “difficulty” using a
dataset representing casework-like conditions (GQS-Test-Dataset-
1). The implications of applying GQS values to impressions under
operational conditions is further explored using a dataset derived
directly from casework (GQS-Test-Dataset-2). Each dataset is
evaluated separately so that the results can be considered within
context of the conditions from which the datasets were obtained
(e.g. casework-like conditions vs. casework conditions).

3.2.1. “Value” determinations
The ValueGQS score is calculated by equation 6 and can range

from -1.0 to 1.0. Values near -1.0 indicate the impression is “not
suitable” or “no value” and thus should not proceed for further
comparison or should do so with caution and additional quality
assurance safeguards in place. Values near 1.0 indicate the
impression is “suitable” or “of value for identification” and may
proceed for further comparison in accordance with normal
operating protocols. Fig. 6 illustrates how well the ValueGQS score
correspond to experts’ subjective judgments of impressions
deemed to be “no value” (n = 252), “value for exclusion only” (n
= 227), or “value for identification” (n = 1141).

From Fig. 6, we see the ValueGQS score is able to reasonably
distinguish between impressions determined to be “no value” and
“value for identification”, which represent the ends of the value
spectrum. There is overlap between the classes; however, the
results demonstrate a trend consistent with expectations—the
majority of impressions judged as “VID” have higher values
compared to those judged as “NV.” The impressions deemed “value
for exclusion only” represent a broad span of ValueGQS scores and
are more difficult to predict. This is understandable, however, since
the impressions deemed “value for exclusion only” represent the
broad category of impressions in the middle of the value spectrum

for which disagreement between examiners was most significant.
Looking closer at the inter-rater reliability across the full dataset
(train and test partitions combined), none of the impressions
resulted in consensus determination (defined as two-thirds
agreement among participants) for this decision outcome.
Consequently, and more practically in an operational setting, the
ValueGQS score has greater applicability to predicting whether an
impression should be categorized as “no value” or “value for
identification” and the lack of support for one of those categories
should be indicative of the potential for disagreements between
experts’ interpretations in the middle of the spectrum, thus
triggering the impression to be raised for further quality assurance
review. Fig. 7 illustrates the performance of the ValueGQS score
when distinguishing against those impressions determined to be
“no value” and “value for identification” using the receiver operator
characteristic (ROC). Table 5 demonstrates the performance
tradeoff when different threshold values are applied.

3.2.2. “Complexity” determinations
The ComplexityGQS score is calculated by equation 7 and can

range from -1.0 to 1.0. Values near -1.0 indicate the impression is
“not suitable” or “highly complex” and thus should only proceed to
comparison with caution and additional quality assurance
safeguards in place. Values near 1.0 indicate the impression is
“non-complex” and may proceed for further comparison in
accordance with normal operating protocols. Fig. 8 illustrates
how well the ComplexityGQS score corresponds to experts’
subjective judgments of impressions deemed to be “no value” or
“highly complex” (n = 291), “complex” (n = 452), or “non-complex”
(n = 877).

It transpires from Fig. 8, that the ComplexityGQS score is able to
reasonably distinguish between impressions determined to be
“highly complex” and “non-complex”, which represent the ends of
the complexity spectrum. There is overlap between the classes;

Fig. 7. Receiving Operating Characteristic (ROC) curve of ValueGQS scores for
impressions subjectively judged by experts to be “no-value” (n = 252) and “value for
identification” (n = 1141) from GQS-Test-Dataset-1. The area under the curve (AUC)
is 97.3% with a 95% confidence interval of (96.5% - 98.2%).

Table 5
Proportion of responses resulting in ValueGQS score greater than threshold values
(-0.50, -0.33, -0.25, 0.00, 0.25, 0.33, 0.50) and assessed as “no-value” (n = 252) and
“value for identification” (n = 1141) by experts from GQS-Test-Dataset-1. Confidence
intervals are indicated (lower CI - upper CI).

Threshold ValueGQS “No Value” “Value for Identification”
Fig. 6. Boxplot of ValueGQS scores for impressions subjectively judged by experts to
be “no value” (NV) (n = 252), “value for exclusion only” (VEO) (n = 227), or “value for
identification” (VID) (n = 1141) from GQS-Test-Dataset-1.

�0.50 0.623 (0.563–0.683) 1.00 (1.00–1.00)
�0.33 0.484 (0.425–0.548) 0.996 (0.991–0.999)
�0.25 0.405 (0.345–0.464) 0.992 (0.987–0.996)
0.00 0.274 (0.218–0.329) 0.979 (0.97–0.987)
0.25 0.159 (0.115–0.206) 0.954 (0.942–0.966)
0.33 0.127 (0.087–0.171) 0.938 (0.924–0.952)
0.50 0.063 (0.036–0.095) 0.895 (0.876–0.912)
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owever, the results demonstrate a trend consistent with expect-
tions—the majority of impressions judged as “non-complex” have
igher values compared to those judged as “highly complex.” The
mpressions deemed “complex” represent a broad span of
omplexityGQS scores and are more difficult to predict. Similar
o the “value” spectrum, this is understandable since impressions
eemed “complex” represent the broad category of impressions in
he middle of the complexity spectrum for which disagreement
etween examiners was most significant. Consequently, and more
ractically in an operational setting, the ComplexityGQS score has
reater applicability to predicting whether an impression should
e categorized as “highly complex” or “non-complex” and the lack
f support for one of those categories should be indicative of the
otential for disagreements between experts’ interpretations in
he middle of the spectrum, thus triggering the impression to be
aised for further quality assurance review. Fig. 9 illustrates the
erformance of the ComplexityGQS score when distinguishing
gainst those impressions determined to be “highly complex” and
non-complex” using the receiver operator characteristic (ROC).
able 6 demonstrates the performance tradeoff when different
hreshold values are applied.

proceed for further comparison in accordance with normal
operating protocols. Fig. 10 illustrates how well the DifficultyGQS
score corresponds to experts’ subjective judgments of impressions
deemed to be “high difficulty” (n = 487), “medium difficulty” (n =
556), or “low difficulty” (n = 577).

From Fig. 10, we see the DifficultyGQS score is able to generally
distinguish between impressions determined to be “high difficul-
ty” and “low difficulty”, which represent the ends of the difficulty
spectrum. There is overlap between the classes; however, the
results demonstrate a trend consistent with expectations—the
majority of impressions judged as “low” difficulty have higher
values compared to those judged as “high” difficulty. The
impressions deemed “medium difficulty” represent a broad span
of DifficultyGQS scores and are more difficult to predict. Similar to
the “value” and “complexity” spectrums, this is understandable
since impressions deemed “medium difficulty” represent the
broad category of impressions in the middle of the spectrum for
which disagreement between examiners was most significant.
Consequently, and more practically in an operational setting, the
DifficultyGQS score has greater applicability to predicting whether
an impression should be categorized as “high difficulty” or “low
difficulty” and the lack of support for one of those categories
should be indicative of the potential for disagreements between
experts’ interpretations in the middle of the spectrum, thus
triggering the impression to be raised for further quality assurance
review. Fig. 11 illustrates the performance of the DifficultyGQS score
when distinguishing against those impressions determined to be
“high difficulty” and “low difficulty” using the receiver operator
characteristic (ROC). Table 7 demonstrates the performance
tradeoff when different threshold values are applied.

3.2.4. Casework evaluation
From GQS-Test-Dataset-1, we see that the GQS values are able to

reasonably distinguish between impressions on the ends of the

ig. 8. Boxplot of ComplexityGQS scores for impressions subjectively judged by
xperts to be “highly complex” (n = 291), “complex” (n = 452), or “non-complex” (n =
77) from GQS-Test-Dataset-1.

ig. 9. Receiving Operating Characteristic (ROC) curve of ComplexityGQS scores for
pressions subjectively judged by experts to be “highly complex” (n = 291) and

non-complex” (n = 877) from GQS-Test-Dataset-1. The area under the curve (AUC)
 96.8% with a 95% confidence interval of (95.9% - 97.7%).

Table 6
Proportion of responses resulting in ComplexityGQS score greater than threshold
values (�0.50, �0.33, �0.25, 0.00, 0.25, 0.33, 0.50) and assessed as “highly complex”
(n = 291) and “non-complex” (n = 877) by experts from GQS-Test-Dataset-1.
Confidence intervals are indicated (lower CI - upper CI).

Threshold ComplexityGQS “Highly Complex” “Non-Complex”

�0.50 0.570 (0.512–0.625) 0.997 (0.992–1.00)
�0.33 0.419 (0.364–0.478) 0.994 (0.989–0.999)
�0.25 0.378 (0.323–0.433) 0.989 (0.981–0.995)
0.00 0.206 (0.162–0.254) 0.962 (0.950–0.975)
0.25 0.076 (0.048–0.107) 0.886 (0.864–0.906)
0.33 0.055 (0.031–0.082) 0.854 (0.830–0.877)
0.50 0.027 (0.010–0.048) 0.717 (0.688–0.747)
Fig. 10. Boxplot of DifficultyGQS scores for impressions subjectively judged by
experts to be “high difficulty” (n = 487), “medium difficulty” (n = 556), or “low
difficulty” (n = 577) from GQS-Test-Dataset-1.
.2.3. “Difficulty” determinations
The DifficultyGQS score is calculated by equation 8 and can range

rom �1.0 to 1.0. Values near -1.0 indicate the impression is “high
ifficulty” and thus should only proceed to comparison with
aution and additional quality assurance safeguards in place.
alues near 1.0 indicate the impression is “low difficulty” and may
10
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value, complexity, and difficulty spectra thus indicating those
impressions which may proceed to further comparison in
accordance with normal operational protocols versus those
impressions which may be flagged for further quality assurance
review and additional safeguards. Having established the baseline
performance characteristics under case-work like conditions, we
can consider the implications if this quality metric were to be
applied in an operational setting on actual casework to demon-
strate the distribution of GQS values and potentially indicate the
need for intervention from a quality assurance perspective when
GQS values fall below an established threshold. To evaluate this, we
use GQS-Test-Dataset-2, which consists of 605 impressions that
were deemed “value for identification” by experts’ subjective
judgements (and subsequently identified to exemplar impres-
sions). Although this dataset does not include those impressions
deemed to be “no value” since operational procedures did not
require retention of annotated images for that outcome category,
we can consider the proportion of impressions for which the
determination of “value for identification” was supported.
Similarly, despite the impressions not being pre-categorized

against the complexity spectrum or difficulty spectrum, we can
visualize the distribution of the impressions against each metric
for general context.

Fig. 12 illustrates the distribution of ValueGQS scores, Complex-
ityGQS scores, and DifficultyGQS scores for the GQS-Test-Dataset-2.

If we were to apply threshold values to the GQS metrics to
evaluate how often the experts’ assessment of “value for
identification” was supported or to indicate circumstances in
which the impressions may be flagged for additional quality
assurance review, we can consider the implications to practice
more clearly. For the Value determination, Table 5 suggests a
ValueGQS score of 0.50 is a reasonable threshold. For the
Complexity determination, Table 6 suggests a ComplexityGQS score
of 0.33 is a reasonable threshold. For the Difficulty determination,
Table 7 suggests a DifficultyGQS score of 0.00 is a reasonable
threshold. Table 8 provides the proportion of impressions for
which normal procedures are sufficient and those for which
additional quality assurance review may be considered based on
the results of the GQS metrics. From these data, we see reasonably
strong support for experts’ subjective judgement on the casework
sample (GQS-Test-Dataset-2) and only a small percentage of
impressions for which additional quality assurance review might
be considered (�2% lacking support for value, �6% categorized as
complex, and �16% categorized as difficult).

3.3. General discussion

The method proposed provides three different quality metrics
which can be used as a means to provide empirical support to
experts’ subjective assessments and a framework for establishing
policies and procedures to flag impressions warranting further
quality assurance review. Determinations of “value” have been
considered by the friction ridge discipline for decades and are

Fig. 11. Receiving Operating Characteristic (ROC) curve of DifficultyGQS scores for
impressions subjectively judged by experts to be “high difficulty” (n = 487) and “low
difficulty” (n = 577) from GQS-Test-Dataset-1. The area under the curve (AUC) is
88.8% with a 95% confidence interval of (86.9% - 90.7%).

Table 7
Proportion of responses resulting in DifficultyGQS score greater than threshold
values (�0.50, �0.33, �0.25, 0.00, 0.25, 0.33, 0.50) and assessed as “high difficulty”
(n = 487) and “low difficulty” (n = 577) by experts from GQS-Test-Dataset-1.
Confidence intervals are indicated (lower CI - upper CI).

Threshold DifficultyGQS “High Difficulty” “Low Difficulty”

�0.50 0.729 (0.690–0.768) 0.986 (0.976–0.995)
�0.33 0.515 (0.470–0.561) 0.953 (0.936–0.969)
�0.25 0.415 (0.372–0.458) 0.922 (0.899–0.943)
0.00 0.193 (0.158–0.228) 0.782 (0.747–0.815)
0.25 0.057 (0.037–0.080) 0.610 (0.570–0.650)
0.33 0.045 (0.029–0.064) 0.555 (0.515–0.594)
0.50 0.012 (0.004–0.023) 0.449 (0.409–0.490)

Fig. 12. Boxplot of ValueGQS, ComplexityGQS, and DifficultyGQS scores for 605
impressions subjectively judged by experts to be “value for identification” and
subsequently identified to exemplar impressions during normal casework
conditions from GQS-Test-Dataset-2.

Table 8
Proportion of impressions for which normal procedures are warranted and those for which additional quality assurance review may be considered based on the results of the
GQS metrics from GQS-Test-Dataset-2 (n = 605) and the following thresholds: ValueGQS scores less than 0.50, ComplexityGQS scores less than 0.33, and DifficultyGQS scores less
than 0.00. Note: GQS-Test-Dataset-2 is a dataset of impressions taken from a single federal laboratory in the United States which were considered “value for identification”
and subsequently identified to exemplar impressions. Given the lack of quantifiable standards for “value for identification” at the time these impressions were examined, the
extent to which these results are generalizable is unclear.
GQS Metric Proportion of Cases with
Normal Procedures Warranted

Proportion of Cases to Consider
Additional Quality Assurance Review

Value 0.977 0.023
Complexity 0.942 0.058
Difficulty 0.843 0.157
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amiliar to all practicing examiners. Determinations of “complexi-
y” and “difficulty”, however, are more recent terms to categorize
mpressions which tend to have lower quality and quantity of
eatures and are therefore more susceptible to erroneous out-
omes. With limited time and resources due to growing backlogs
nd operational demands, it is critical to have a means of focusing
fforts on those impressions most vulnerable to errors or may
equire additional quality control measures. This method provides

 means of accomplishing this goal in a more objective,
ransparent, and consistent fashion grounded by empirical
alidation. Although ground truth is non-existent for determi-
ations of “value”, “complexity”, and “difficulty”, the results
emonstrate reasonable agreement to experts’ subjective assess-
ents and illustrate a consistent general trend of increasing GQS
alues across the ordinal scale of “value”, “complexity”, and
difficulty” determinations. Having these quantitative outputs
long ordinal scales, further work could enable a visual illustration
nd representation of the overall quality of an impression in three-
imensional space based on axes of “value”, “complexity”, and
difficulty”.

Two important limitations for this method remain. First, the
QS and GQS values are dependent upon the subjective
etection and annotation of friction ridge skin features
minutiae) by the human expert. Second, the method relies
n clarity attributes of friction ridge minutiae and does not
onsider all of the attributes that experts may consider when
aking subjective determinations, such as pattern type,

eature type, rarity of features and their configurations,
ontinuity of ridge detail between features, and other types
f features (non-minutiae) available.
To attenuate these limitations, two general recommendations

or policy and procedure could be considered. First, the method
hould be used after the expert has visually analyzed, detected, and
nnotated friction ridge skin features for which the expert has
easonably high confidence of their presence. Second, the method
hould be used as a framework for flagging impressions which may
equire additional quality assurance review. Although the method
emonstrates reasonable consistency with experts’ judgements, it
hould not be considered a replacement for the experts’
nterpretation. This method is a step toward greater transparency
nd objectivity, but is not designed or intended to supplant the
areful interpretation of experts.
This method provides fingerprint experts the capability to

rovide an empirical foundation to support their subjective
nterpretations following Analysis. It also offers a framework for
rganizations to establish transparent, measurable, and demon-
trable criteria for Value determinations and a means of flagging
mpressions that are vulnerable to erroneous outcomes or
nconsistency between experts (e.g. higher Complexity and/or
ifficulty). Finally, it provides a means for quantitatively
ummarizing the overall quality of the impression in terms of
alue, Complexity, and Difficulty for ensuring representative
istributions in samples used for research designs, proficiency
esting, error rate testing, and other applications by forensic
cience stakeholders. As a stand-alone application, this method
nables the forensic science community to take a step toward
reater transparency and empiricism – particularly as it relates to
alue and Complexity determinations during casework examina-
ions and assessments of Difficulty for research, training, and
esting purposes. Further, because this method provides quality

4. Conclusion

Over the years, the forensic science community has faced
increasing criticism by scientific and legal commentators, chal-
lenging the validity and reliability of many forensic examination
methods that rely on subjective interpretations by forensic
practitioners. Among those concerns is the lack of an empirically
demonstrable basis to assess the quality of fingerprint evidence for
a given case. In this paper, a method is presented which measures
the clarity of friction ridge features and evaluates the quality of
impression across three different scales: Value, Complexity, and
Difficulty. The local quality scores (LQS) provide a quantitative
assessment of the quality of individual features based on the clarity
of the local region of friction ridge detail immediately surrounding
each feature. Individual features are then color-coded green,
yellow, or red indicating high, medium, or low quality. The results
demonstrate remarkable separation between regions representing
the extreme ends of “good” and “bad” quality of friction ridge detail
and general agreement with experts’ subjective assessments of
feature quality based on features categorized as “high” or
“medium” quality. While quality assessments at localized regions
are important, quality assessments for the overall impression have
the most significant impact on the ultimate outcome of the
examination. The global quality scores (GQS) provide quantitative
assessments of the quality of the entire impression against
different outcome scales (value, complexity, and difficulty) based
on the quality and quantity of individual features. The results
demonstrate reasonable consistency between automated predic-
tions and experts’ subjective assessments. In an operational
environment, the tool is intended to provide an empirical
foundation to support experts’ subjective judgments, provide
transparency to the overall quality of the impression for a given
outcome (e.g. determination of value, complexity, or difficulty),
and provide a framework to establish policies and procedures for
examination decisions geared toward flagging impressions that are
generally lower quality and more vulnerable to disagreements
between experts or potentially erroneous interpretations.

As with any method, there are limitations to consider. The most
significant is that this method relies on the features annotated by
the expert and does not take into account all aspects of the friction
ridge detail. Consequently, the system should not be considered as
a means of supplanting expert interpretation and judgement when
analyzing friction ridge detail. Rather, the method should be
considered a tool to support experts’ judgements or detect
potentially problematic impressions necessitating further quality
assurance review.

Although various aspects of this method may be further
optimized, the performance characteristics described are proposed
as a sufficient basis to demonstrate the foundational validity of the
method to perform within the scope of its intended purpose – as a
means of providing a quantitative measure of the quality of a
fingerprint. Further optimizations which may improve upon the
method’s performance are encouraged for future works.

Disclaimer

The opinions or assertions contained herein are the private
views of the authors and are not to be construed as official or as
reflecting the views of the United States Department of the Army or
United States Department of Defense.
ssessments at both the local and global levels (LQS and GQS), its
evelopment lends the possibility of integrating with other quality
ssessment and statistical evaluation software applications, such
s FRStat [27], to provide a complete tool-pack to ensure experts’
nterpretations are empirically supported for all major decisions
hroughout the entire examination methodology.
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