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A B S T R A C T

The forensic fingerprint community has faced increasing amounts of criticism by scientific and legal
commentators, challenging the validity and reliability of fingerprint evidence due to the lack of an
empirically demonstrable basis to evaluate and report the strength of the evidence in a given case. This
paper presents a method, developed as a stand-alone software application, FRStat, which provides a
statistical assessment of the strength of fingerprint evidence. The performance was evaluated using a
variety of mated and non-mated datasets. The results show strong performance characteristics, often
with values supporting specificity rates greater than 99%. This method provides fingerprint experts the
capability to demonstrate the validity and reliability of fingerprint evidence in a given case and report the
findings in a more transparent and standardized fashion with clearly defined criteria for conclusions and
known error rate information thereby responding to concerns raised by the scientific and legal
communities.
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1. Introduction

Over the last several years, the forensic science community has
faced increasing amounts of criticism by scientific and legal
commentators, challenging the validity and reliability of many
forensic examination methods that rely on subjective interpreta-
tions by forensic practitioners [1–7]. Of particular concern, noted
in 2009 by the National Research Council (NRC) of the National
Academies of Science (NAS) [3] as well as the President’s Council of
Advisors on Science and Technology (PCAST) as recently as
September 2016 [7], is the lack of an empirically demonstrable
basis to substantiate conclusions from pattern evidence, thus
limiting the ability for the judiciary to reasonably understand the
reliability of the expert’s testimony for the given case. Consistent
with several academic commentators, both the NRC and PCAST
strongly encouraged the forensic science community to develop
tools to evaluate and report the strength of forensic evidence using
validated statistical methods [3,7–8]. While these concerns apply
to nearly every pattern evidence discipline, the forensic fingerprint
discipline has received most of the attention because fingerprint
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analysis is one of the most widely used techniques in the criminal
justice system. As a result, over the last several years numerous
methods and models have been proposed to provide a statistical
estimate of the weight of fingerprint evidence using features that
are familiar to forensic practitioners, primarily fingerprint
minutiae [9–23].

Prior methods can be classified as either (a) feature-based
models, which calculate probability estimates from the random
correspondence of feature configurations within a pre-determined
tolerance or (b) similarity metric models, which calculate the
probability estimates from distributions of similarity scores.
Among the feature-based models: Zhu et al. proposed a family
of finite mixture models to represent the distribution of fingerprint
minutiae, including minutiae clustering tendencies and depen-
dencies in different regions of the fingerprint image domain to
calculate the probability of a random correspondence [10]; Su and
Srihari proposed a model based on the spatial distribution of
fingerprint minutiae, taking into account the dependency of each
minutiae on nearby minutiae and the confidence of their presence
in the evidence, to calculate the probability of random correspon-
dence [14]; Lim and Dass proposed a simulation model based on
the distribution of fingerprint minutiae estimated using a Bayesian
MCMC framework [15]; Abraham et al. proposed a model based on
support vector machines trained with features discovered via
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Fig. 1. Conceptual illustration of the overlay and pairing of features. The grey
annotations represent features on one impression and the black annotations
represent features on the other.
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morphometric and spatial analyses of corresponding minutiae
configurations for both match and close non-match populations
[19]. Among the similarity metric models: Neumann et al.
proposed a variety of models based on a similarity metric
calculated from feature vectors taking into consideration type,
direction, and relative spatial relationships of fingerprint minutiae
[9,12,17] as well as taking into account general pattern [18]; Egli
[11,13,21], Choi and Nagar [16], and Leegwater et al. [23] proposed a
variety of models based on the distribution of similarity scores
from Automated Fingerprint Identification Systems (AFIS). Alber-
ink et al. evaluate the effect of different types of conditioning on
the impact of the results derived from AFIS-based models [20].
Taking a slightly different approach than those discussed above,
Neumann et al. proposed a model relying on an AFIS algorithm to
estimate the probability distributions of spatial relationships,
directions and types of minutiae rather than directly modeling the
distribution of AFIS scores [22].

Although each of the proposed models demonstrated promis-
ing performance metrics, none have been widely accessible to the
forensic community, thus prohibiting their ability to be further
evaluated or implemented into routine casework. Consequently,
forensic science laboratories throughout the United States have
been unable to adequately address the concerns by the NRC and
PCAST by demonstrating the reliability of fingerprint evidence for
the case at hand. In light of this gap, this paper presents a method,
developed as a stand-alone software application, FRStat, which
measures the similarity between two configurations of friction
ridge skin features and calculates a similarity metric. Statistical
modeling of the distributions of the similarity statistic values from
mated and non-mated impressions facilitates a statistical assess-
ment of the strength of the fingerprint evidence. Although this
method builds upon the general concepts of similarity-based
models described earlier, this method utilizes a novel approach for
quantifying the similarity and strength of fingerprint evidence.
Further, having been developed as a stand-alone software
application by the United States Government, this method is
accessible to the forensic community thereby providing the
capability to ensure the strength of fingerprint evidence is
evaluated with an empirically grounded basis.

This paper provides a brief overview of the similarity
calculations performed by the method followed by more detailed
discussions regarding its development, performance and valida-
tion. Limitations of the method and considerations for policy and
procedure when applied to forensic casework are also discussed.

2. Materials & methods

2.1. Similarity calculations

In general terms, the method measures the similarity between
the configurations of friction ridge skin features (often referred to
as level 2 detail or minutiae) from two different fingerprint images.
The spatial relationships and angles of the features annotated by a
forensic examiner are used to calculate a similarity statistic (i.e.
score). The similarity statistic is then evaluated against datasets of
similarity statistic values derived from pairs of impressions
relevant for forensic casework made by mated (same) and non-
mated (different) sources of friction ridge skin to calculate a
statistical estimate of the strength of the given comparison. The
method consists of three overarching steps: (1) feature pairing, (2)
feature measurements, and (3) similarity statistic calculations.

In order to perform the similarity calculations, the features must
be paired between the two impressions. Features are paired by
initially detecting the Cartesian coordinates and angles of the
annotated features on each image, which represent the locations and
angles of ridge flow for the features. Using those feature details, a
series of transformations are performed by iteratively rotating and
translating the feature configurations to identify the optimal overlay
of features between the two impressions among all possible
overlays. Corresponding features are paired between the two images
using a well-established combinatorial optimization algorithm to
solve for the “optimal assignment” of features within each
configuration [24]. Fig. 1 illustrates the overlay and pairing of
features. Once paired, the features retain their original Cartesian
coordinates and angles as they appear on their respective images.

Feature measurements are performed by applying a series of
translation and rotation transformations to the paired features to
facilitate anchoring and overlay of feature triplets (sub-config-
urations of three features). Within the feature triplet, two features
serve as primary and secondary anchors while the third feature is
measured with respect to the Euclidean distance and angle
differences between the paired features. The primary anchor
features are aligned on the origin of a coordinate plane and the
secondary anchor features are aligned parallel to the x-axis. Fig. 2
illustrates this concept of anchoring and overlaying a feature
triplet. Using the measured differences between paired features, a
“weight” is calculated for both the distance difference and angle
difference between each feature. This process is repeated such that
weights for distance and angle differences are calculated for all
features using every possible combination of features in each
triplet.

The weight functions exploit subtle variations in the measured
differences as well as provide context to the significance of those
measurements in terms of the plasticity of friction ridge skin. The
weight functions were designed such that the following criteria
were met:

a. The weight functions are insensitive to common variations of
feature location and angle displacements in mated source
impressions due to distortion during friction ridge skin
deposition under heavy pressure and movement.

b. The weight functions maximize the separation of similarity
statistic values between mated and non-mated impressions for
a given quantity of features.



Fig. 2. Conceptual illustration of the anchoring and overlay of a feature triplet. The
primary pair of anchor features are on the origin. The secondary pair of anchor
points are parallel to the x-axis. The grey annotations represent features on one
impression and the black annotations represent features on the other.
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c. The weight functions increase the separation of similarity
statistic values between mated and non-mated impressions as
the number of features increases.

The rules and parameter values for the weight functions are
based on the empirical observations by Fagert & Morris [25]. In
their study, Fagert & Morris [25] measured the variations of
features commonly observed from repeated impressions of mated
source fingers under various conditions of lateral pressure with
respect to the distance difference and angle differences of features.
Using the observations by Fagert & Morris [25] as an initial starting
point, manual optimizations of the rules and parameter values for
the weight functions were performed using a subset of mated
fingerprint samples representing actual casework conditions. Once
the measurements and weights for each feature are calculated they
are combined into a single statistic and transformed to represent
the global similarity of the entire configuration of features (once
transformed, higher values indicate higher similarity).

As noted above, the similarity statistic is dependent upon the
manual selection and annotation of features by fingerprint experts.
Consequently, the precision by which features are annotated
introduces uncertainty in the calculated value of the similarity
statistic. The method accounts for this uncertainty by applying an
iterative random sampling scheme for the annotated details
resulting in random displacements of the feature annotations in
terms of Euclidean distance and angles. The parameters for the
random displacements of feature annotations were determined by
modeling the variability of feature annotations in latent impres-
sions and reference impressions across multiple practicing
fingerprint experts employed by a federal crime laboratory in
the United States. Supplemental Appendix I provides more specific
details regarding the evaluation and statistical modeling of the
precision of feature annotations by practicing experts.

Following one-hundred iterations of randomly displacing
feature annotations and re-calculating the global similarity
statistic (using an unseeded random number generator), the final
similarity statistic value output to the user is calculated as the
lower bound of the 99% confidence interval for the mean. The
lower bound of the 99% confidence interval was selected as it
provides a conservative estimate of the “true” similarity statistic
value for the given annotation.
2.2. Empirical distributions

The empirical distributions of similarity statistic values among
mated and non-mated impressions provide the foundation for
estimating the strength of the fingerprint evidence. Taking into
consideration that this method is intended for use in criminal or civil
courts, the empirical distributions are intentionally biased such that
the non-mated data are biased to higher similarity statistic values
and mated data are biased to lower similarity statistic values. For
non-mated data, this is accomplished by conditioning on (i) the
region of friction ridge skin which maximizes the opportunities of
observing higher values and (ii) any set of n features determined to
be “optimally paired” from a larger set of m possible features with
respect to the combinatorial optimization algorithm described in
Ref. [24] under any condition of rotation and translation such that
the similarity statistic values are maximized. For mated data, this is
accomplished by conditioning on lateral pressures and other
distortions such that the similarity statistic values are minimized
and ensuring that the distributions represent the full range of
plausible similarity statistic values that could reasonably be
observed in casework when impressions are subject to various
distortions during deposition. Keeping in mind that the similarity
calculations do not take into account pattern type, feature type,
specific feature configurations, or other details which may have
biological dependencies, the empirical distributions were not
conditioned on those specific criteria. However, because the
similarity statistic calculations were designed to account for feature
quantity, the distributions are calculated separately for each
quantity of features (ranging from 5 to 15).

For the non-mated distributions, conditioning on the delta
region was determined to maximize the opportunities of observing
higher similarity statistic values. Supplemental Appendix II
provides more specific details regarding this determination. The
distributions of similarity statistic values characterizing the
broader population of non-mated samples for each quantity of
features (ranging from 5 to 15) were generated using a subset of
impressions from the National Institute of Standards and
Technology (NIST) Special Database (SD) 27 [26], cropped to a
standard size of 0.5 in. � 0.5 in. (12.7 mm � 12.7 mm) centered on
the delta and randomly paired to non-mates. Features were
annotated by practicing fingerprint experts beginning with those
closest to the delta. Only n number of features under consideration
were annotated in “image #1”. All visible features, m, in “image #2”
were annotated, such that m » n for each comparison. For each
quantity of features, a distribution of 2000 similarity statistic
values was calculated and conditioned on any set of n features on
image #1 determined to be “optimally paired” from the larger set
of m possible features on image #2 with respect to the
combinatorial optimization algorithm described in Ref. [24]. The
two-sample Kolmogorov–Smirnov (K–S) test was used to evaluate
the stability of the distributions. This was accomplished by
comparing the distribution from one half of the dataset to the
distribution from the other half of the dataset (each half distinct
from one another) for each quantity of features. The K–S test was
selected for this purpose on the basis of its ubiquitous use as a non-
parametric test of the equality of continuous probability distri-
butions. For all distributions, the K–S test resulted in a p » 0.05 and
determined to be sufficiently stable to permit parameter estima-
tion and modeling of the population distributions.

For the mated distributions, a sample of fingerprints were
collected from 50 different individuals using a livescan device with
extreme distortions deliberately produced. This sample was deter-
mined to provide distributions representative of those observed in
actual casework. Supplemental Appendix III provides more specific
details regarding this determination. For the mated distribution,
each individual provided eleven repeated impressions from the right
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thumb on the livescan device. The thumb was chosen because it
results in maximal pliability of skin compared to the other fingers
[25]. The repeat impressions consisted of one “non-distorted”
impression used as the reference print and the remaining ten were
made with lateral distortions applied in the following directions:
north, south, east, west, northeast, northwest, southeast, southwest,
twist clockwise, and twist counter-clockwise. Pressure was applied
in the respective directions until the skin began to lose grip with the
livescan surface. Of the 500 pairs obtained (ten distortions each for
fifty different individuals), one pair lacked sufficient clarity to permit
accurate determination of the corresponding features and therefore
was discarded. Fifteen corresponding fingerprint features for the
remaining 499 pairs of mated fingerprint impressions were
annotated by practicing fingerprint experts in a federal crime
laboratory in the United States. The distribution of similarity statistic
values for each subset of feature quantities (ranging from 5 to 15) was
calculated by randomly selecting (using a random selection
algorithm) four combinations of n features out of m available
(where m = 15). This resulted in 1996 similarity statistic values for
each quantity of features (ranging from 5 to 14) and 499 similarity
statistic values for 15 features. The stability of the distributions were
evaluated using a two-sample K–S test comparing the distribution
from one half of the dataset to the distribution from the other half of
the dataset (each half distinct from one another) for each quantity of
features. For all distributions, the K-S test resulted in a p » 0.05 and
determined to be sufficiently stable to permit parameter estimation
and modeling of the population distributions.

2.3. Parameter estimation and modeling

The empirical distributions of similarity statistic values described
above (non-mated and mated) were modeled to determine plausible
probability density functions which may model the similarity
statistic values for the relevant populations of non-mated and mated
friction ridge skin impressions. Taking into consideration the visual
appearance of the empirical distributions and the construct of the
weighting functions, the empirical distributions were each modeled
using k-component (where k = 2 or 3) mixtures of Gaussian
distributions. Component weights and parameter estimates were
determined using maximum likelihood estimation methods within
commerciallyavailable statistical analysis software (JMP). Although
k-component Gaussian mixtures are more common, logistic
distributions were applied on the basis of their heavier tails
compared to Gaussian distributions. The heavier tails provide more
conservative estimates of probabilities in the extreme ends of the
distributions. The parameters for the logistic distribution were
approximated using the estimated parameters of the Gaussian
distributions. This was accomplished by setting the location
parameter of the logistic distribution equal to the mean parameter
of the Gaussian distribution as well as applying a coefficient to the
standard deviation parameter of the Gaussian to approximate the
scale parameter of the logistic distribution such that the difference
between the two densities is minimized. Prior to estimating the
component weights and parameter values, the empirical distribu-
tions were partitioned into two groups. For each bin of feature
quantities, three-fourths of the samplewas randomlyselectedusing
a random selection algorithm and used to estimate the population
distribution parameters. The remainder of the sample was used to
evaluate the goodness of fit of the estimated parameters for the
population distribution. Once the optimal parameters were
estimated, a one-sample K–S test was performed to evaluate the
goodness of fit between the estimated theoretical logistic mixture
distribution and the empirical distribution of the partition of
similarity statistic values that was not used to estimate the
theoretical distribution parameters. This process was repeated
for each quantity of features (ranging from 5 to 15) for both mated
and non-mated samples. The parametric models are proposed as
plausible estimations of the population distributions for each
quantity of features. Supplemental Appendix IV provides more
specific details regarding these determinations. Figs. 3 and 4
illustrate the overlays between the theoretical density distributions
and the empirical distributions of similarity statistic values for non-
mated and mated datasets, respectively.

2.4. Method performance

The overall performance of the method was evaluated in terms
of its sensitivity, specificity, within-sample variability, and
between-sample variability. The performance of the method
may be evaluated in terms of both the similarity statistic (i.e.
global similarity statistic, GSS) values alone as well as in terms of
the similarity statistic values in the context of the relevant
probability distributions of mated vs. non-mated populations.

In terms of the mated distribution, the value of interest is the
left tailed probability (the probability of a specific similarity
statistic value or lower) as depicted in Eq. (1). In other words, the
left tailed probability provides an indication of the proportion of
similarity statistic values from mated source impressions which
are estimated to be less than a specified test statistic value for a
given case at hand. In terms of the non-mated distribution, the
value of interest is the right tailed probability (the probability of a
specific similarity statistic value or higher) as depicted in Eq. (2). In
other words, the right tailed probability provides an indication of
the proportion of similarity statistic values from non-mated source
impressions which are estimated to be greater than a specified test
statistic value for a given case at hand.

P GSSn � GSS tð Þnjunmated

� �

Equation 1: The left-tailed probability of observing a given
similarity statistic, GSS(t), value or lower with respect to the
distribution of GSS values from mated impressions, where “t” indicates
the test statistic, “n” represents the feature quantity, and un represents
the parameters characterizing the distribution of values for a given
feature quantity.

P GSSn � GSS tð Þnjunnon�mated

� �

Equation 2: The right-tailed probability of observing a given
similarity statistic, GSS(t), value or higher with respect to the
distribution of GSS values from non-mated impressions, where “t”
indicates the test statistic, “n” represents the feature quantity, and un
represents the parameters characterizing the distribution of values for
a given feature quantity.

The values derived from Eqs. (1) and (2) may be combined as a
ratio, such that the estimated proportion of a given similarity
statistic value or lower among mated sources is considered relative
to the estimated proportion of a given similarity statistic value or
higher among non-mated sources. Eq. (3) combines Eqs. (1) and (2)
as the numerator and denominator, respectively.

P GSSn � GSS tð Þnjunmated

� �

P GSSn � GSS tð Þnjunnon�mated

� �

Equation 3: Ratio of equations 1 and 2 indicating the relative
support of a given similarity statistic, GSS(t), in terms of one
proposition (mated) over another (non-mated).

From equation 3, values greater than 1 indicate a higher
probability of the observed similarity statistic value among mated
sources compared to non-mated sources and values less than 1
indicate a higher probability of the observed similarity statistic



Fig. 3. Empirical density distributions of the similarity statistic values for the non-mated sample (grey) compared to the theoretical (k-component logistic mixture)
distribution (black) for each quantity of features (ranging from 5 to 15). The x-axis represents the global similarity statistic values. The y-axis represents the density.

Fig. 4. Empirical density distributions of the similarity statistic values for the mated sample (grey) compared to the theoretical (k-component logistic mixture) distribution
(black) for each quantity of features (ranging from 5 to 15). The x-axis represents the global similarity statistic values. The y-axis represents the density.
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values among non-mated sources compared to mated sources.
Values equal to 1 indicate equal probability of the observed
similarity statistic value among mated and non-mated sources.

It is important to note that Eqs. (1) and (2) are calculated as tail
probabilities rather than likelihoods; thus, Eq. (3) is not a true
likelihood ratio or Bayes’ factor and should not be used as such
with the intent of calculating a posterior probability.

2.4.1. Datasets
The performance of the method is evaluated using the following

datasets:

1. Mated test dataset #1 (known to be mated) —A test dataset of
288 mated latent and reference impressions deposited under
semi-controlled, normal handling conditions (to simulate
casework) on a variety of different surfaces by 78 different
individuals. The purpose of this dataset is to evaluate the
performance of the method using latent and reference
impressions which are similar to casework in terms of
deposition and development, but for which ground truth mated
status is known. Latent impressions were developed using a
variety of chemical and physical processing techniques com-
monly used in casework by fingerprint experts, such as
cyanoacrylate ester fuming, fluorescent dye stains, ninhydrin,
indanedione, 1-8 diazafluoren-9-one, and fingerprint powders.
Each set was visually examined and corresponding features
(ranging between 5 and 15) were manually annotated by
practicing fingerprint experts in a federal crime laboratory in
the United States. The overall quality (clarity) of the latent
impressions is considered to be representative of casework
impressions. This is based on the subjective evaluation by
fingerprint experts as well as a comparison of the empirically
measured quality scores using LQMetrics software available in
the Universal Latent Workstation. A two-sample K–S test was
performed comparing the distribution of LQMetric quality
(clarity) scores from this dataset to the distribution of LQMetric
clarity scores from the publically available dataset of casework
impressions (mated test dataset #2 described below). The value
of the K–S test statistic (D288,184 = 0.087) fails to reject the null
hypothesis that the two samples originated from the same
distribution (p > 0.05) based on a p-value decision threshold of
0.01.

2. Mated test dataset #2 (accepted to be mated) — A casework
dataset of 184 latent and reference impressions publically
available by the National Institute of Standards and Technology
(NIST) Special Database 27 [26]. Although this dataset is
commonly accepted to be mated by the general scientific
community, it was collected from adjudicated casework by the
Federal Bureau of Investigation and therefore ground truth is
not actually known. The purpose of this dataset is to evaluate
the performance of the method using latent and reference
impressions from actual casework and which has been
publically available and commonly used by the general scientific
community. Each set was visually examined and corresponding
features (ranging between 5 and 15) were manually annotated
by practicing fingerprint experts in a federal crime laboratory in
the United States. NOTE: The NIST Special Database 27 actually
contains 258 latent and reference impressions in total; however,
only 184 were able to be evaluated due to a technical issue with
the remaining files preventing them from being opened
(corrupted image files).

3. Mated test dataset #3 (believed to be mated) — A casework
dataset of 605 latent and reference impressions collected from
casework during the course of routine operations by fingerprint
experts in a federal crime laboratory in the United States and
reported as “positive associations”. The purpose of this dataset is
to evaluate the performance of the method using latent and
reference impressions from a much larger sample of actual
casework impressions as compared to the NIST Special Database
27 alone. The impressions were collected from a wide variety of
cases, substrates, and assigned fingerprint experts. The corre-
sponding features (ranging between 7 and 15) were manually
annotated by the assigned fingerprint expert during the initial
case examination. The selected features were then annotated
later in a format suitable for FRStat analysis by the same
fingerprint expert for purposes of this evaluation.

4. Non-mated test dataset #1 (known to be non-mated) — A test
dataset of 20 latent print images from the mated test dataset #1
that were selected on the basis of representing the left delta
region fingerprint impressions and 25 non-mated reference
images obtained from the NIST Special Database 27 [26]. The
purpose of this dataset is to evaluate the performance of the
method using non-mated impressions for which the impres-
sions were arbitrarily paired and for which the impressions are
publically available and commonly used by the general
scientific community. For each latent print image, fifteen
features were annotated around the delta region. Each reference
print was cropped to a standard size of 0.5 in. � 0.5 in.
(12.7 mm � 12.7 mm) centered on the left delta. All features
visible in the cropped reference images were manually
annotated by practicing fingerprint experts. For each compari-
son of the 20 latent prints to each of the 25 non-mated
reference prints, a configuration of n features was randomly
selected (using a random selection algorithm) from the latent
print and compared against the reference print (each containing
m annotated features, where m » n) resulting in 500 similarity
statistic values for each set of n features (ranging from 5 to 15).
One similarity statistic value was obtained per image pair. The
similarity statistic value was conditioned on any set of n
features on image #1 determined to be “optimally paired” from
the larger set of m possible features on image #2 with respect to
the combinatorial optimization algorithm described in Ref. [24]
under any condition of rotation and translation.

5. Non-mated test dataset #2 (known to be non-mated; “close
non-match” from AFIS database search) — Two separate
datasets: (#2a) a test dataset of fingerprint images representing
the “delta” region and (#2b) a test dataset of fingerprint images
representing the “core” region. The purpose of this dataset is to
evaluate the performance of the method using non-mated
impressions for which the impressions were paired on the basis
of an AFIS similarity algorithm. Each dataset was separated into
eleven separate subsets, each containing approximately 100
samples, conditioned on the number of features (n) being
compared (ranging from 5 features to 15 features). Features
were manually annotated by practicing fingerprint experts such
that the features closest to the reference point (core or delta
depending on the sample) were annotated first and then the
remaining n features were annotated in a radiating fashion
outward. Post annotation, each image was cropped by a
bounding rectangle such that only those ridges and features
that are part of the annotated configuration remain. These
images serve as the “query” print. Each query print was then
searched using an AFIS against an operational database
containing approximately 100 million different fingerprint
impressions from approximately 10 million different individu-
als. The AFIS ranked the top 20 most similar reference
fingerprints to the fingerprint image searched. Of the top 20
results, the fingerprint image in rank 1 was confirmed to be a
non-mated source with respect to the query print and used for
comparison. Supplemental Appendix II provides more specific
details regarding the development of this dataset.
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2.4.2. Sensitivity & specificity
The sensitivity was measured as the proportion of mated

samples which resulted in a probability ratio value greater than a
specified threshold ratio value. The specificity was measured as the
proportion of non-mated samples which resulted in a ratio value
less than a specified threshold ratio. Both the sensitivity and
specificity will vary as a function of the ratio value chosen as a
threshold. As the threshold ratio value increases, the sensitivity
will decrease and the specificity will increase. As the threshold
ratio value decreases, the sensitivity will increase and the
specificity will decrease. Accordingly, both sensitivity and speci-
ficity were measured separately using threshold ratio values of 1,
10, and 100, respectively. In addition to these threshold values,
Receiver Operator Characteristics (ROC) curves illustrate the
performance of the method across the full range of potential
threshold values.

The sensitivity was evaluated using the mated test dataset #1
(known to be mated). Mated test dataset #2 (accepted to be mated)
and mated test dataset #3 (believed to be mated) were also utilized
to evaluate the consistency between threshold ratio values and
experts’ interpretation of mated status. The term “consistency” is
used here since it is not a true measure of sensitivity because
mated status is not truly known. Each dataset was considered
separately. Of the total number of available latent and reference
impressions in each dataset, up to ten different configurations of n
features were randomly selected (using a random selection
algorithm) from m available for each quantity of features (ranging
between 5 and 15) to evaluate the results across the impressions
subject to different conditions of distortion. Each configuration is
considered as a separate measurement.

The specificity was evaluated using the non-mated test dataset
#1 (known to be non-mated) as well as the non-mated test datasets
#2a and #2b (known to be non-mated, “close non-match” from
AFIS database search). The use of both datasets provides two
different perspectives of the specificity as a result of prints being
paired with non-mated impressions selected arbitrarily (non-
mated dataset #1) as well prints being paired with the most-
similar non-mated impression selected from a database of
approximately 100 million others. In the latter context, “most-
similar” is defined as the #1 rank candidate response from a large
operational AFIS utilizing blackbox fingerprint search and match-
ing algorithms. It is reasonable to consider the distribution of
similarity statistic values from the non-mated test dataset #2 as
representing the extreme tail of the distribution of values from the
non-mated test dataset #1.

2.4.3. Within-sample variability & between-sample variability
The variability of the method was evaluated separately in terms

of the within-sample variability and between-sample variability of
the similarity statistic values. The within-sample variability
captures the variation as a result of multiple measurements of
the same features. The between-sample variability captures the
variation as a result of multiple measurements of different features
and prints. Thus, the within-sample variability accounts for
variations due to the imprecision and uncertainty of the specific
location and angles of the feature annotations and the between-
sample variability accounts for variations due to differences in
distortions caused by pressure, substrate, etc. from different
measurements across different configurations of features and
impressions.

By taking into account the imprecision of feature annotations
described in Supplemental Appendix I, repeat measurements of
the same features (without manual re-annotation) are subject to
variation due to the random resampling scheme built into the
method. The within-sample variability captures the variation of
the similarity statistic values as a result of multiple measurements
of the same features. The within-sample variability was evaluated
using 92 image replicates from the mated test dataset #1 and
mated test dataset #2, each of which contained 15 annotated
features. Considering the intended use of this method is on
impressions believed to be mated by the fingerprint expert, the
within-sample variability was not evaluated on the non-mated test
datasets. For each image replicate, a configuration of n features was
selected at random. Using the same configuration of n features for
each respective replicate, a series of 25 repeat measurements were
taken (where each measurement represents the lower bound of
the 99% confidence interval of the k-iterations from the random
resampling scheme; and where k = 100). The standard deviation of
the 25 repeat measurements for each of the 92 image replicates
was calculated. Using the standard deviations from each of the 92
image replicates, the combined standard deviation was calculated
as the within-sample variability. This was repeated for each bin of
feature quantities (ranging from 5 to 15).

The between-sample variability captures the variation of the
similarity statistic values as a result of multiple (different)
measurements of different features across different impressions.
While variabilities of the similarity measurements as a result of the
imprecision of the feature annotation process are taken into
account in the similarity statistic calculations, the variabilities of
the similarity measurements as a result of different conditions of
distortion across different regions of an impression or across
different impressions are not since they are not a consequence of
repeat attempts to measure the same feature data. Rather, the
between-sample variability is expected to represent a much larger
range of similarity statistic values similar to the range of values
represented by the estimated parameters of the population
distributions discussed in further detail in Supplemental
Appendix IV. The between-sample variability was evaluated using
all image replicates from the mated test dataset #1 (known to be
mated), mated test dataset #2 (accepted to be mated), and mated
test dataset #3 (believed to be mated) combined. Considering the
intended use of this method is on impressions believed to be mated
by the fingerprint expert, the between-sample variability was not
evaluated on the non-mated test datasets. For each of the total
number of available latent and reference impressions from each
mated test dataset (1077), up to ten different k-configurations of n
features were randomly selected (using a random selection
algorithm) from m available for each quantity of features (ranging
between 5 and 15) to evaluate the results across the impressions
subject to different conditions of distortion. The standard deviation
was calculated as the between-sample variability for each bin of
feature quantities (ranging from 5 to 15).

The within-sample variability and between sample variability
are both illustrated in terms of the similarity statistic value rather
than in terms of the probability ratio because the impact to the
probability ratio will vary depending on the location of the
similarity statistic value within the distributions — subtle
variations of the similarity statistic value in the tail of a distribution
will cause a more dramatic change to the probability value
compared to the other locations, such as the middle region. Thus,
representing the variability in terms of the probability ratio itself
would be incomplete and potentially misleading.

3. Results & discussion

The overall performance of the method was evaluated in terms
of its sensitivity, specificity, within-sample variability, and
between-sample variability. Initially, the expected performance
may be evaluated in terms of comparing the empirical distribu-
tions of similarity statistic values between mated and non-mated
impressions. These distributions served as the empirical



Fig. 5. Empirical distributions of similarity statistic values for both non-mated (dark grey) and mated (light grey) samples for feature quantities 5 through 15. The x-axis
represents the global similarity statistic values. The y-axis represents the density.
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foundation for the parameter estimations and modeling described
in greater detail in Supplemental Appendix IV. Fig. 5 illustrates the
empirical distributions in terms of density.

From Fig. 5, two important observations can be made. First, we
see that the distributions appear to exhibit little overlap between
the mated and non-mated datasets. Second, we see that the
distributions appear to increase in separation as the feature
quantities increase.

3.1. Sensitivity

The sensitivity was evaluated using the mated test dataset #1
(known to be mated). Mated test dataset #2 (accepted to be mated)
and mated test dataset #3 (believed to be mated) were also utilized
to evaluate the consistency between threshold ratio values and
experts’ interpretation of mated status (“consistency” is used here
since it is not a true measure of sensitivity because mated status is
not truly known). Each dataset was considered separately. Table 1
provides the sensitivity using mated test dataset #1. Table 2
provides the consistency between the method and experts’
interpretation of mated status using mated test dataset #2. Table 3
provides the consistency between the method and experts’
interpretation of mated status using mated test dataset #3.

With respect to the sensitivity calculations listed above, it is
important to note that the values were generated without the
examiners having direct feedback regarding their annotation
precision. Without such feedback, examiners have become
acclimated to a relaxed environment in which they were accus-
tomed to annotating the mere presence of a feature and in which
measurements were not taken directly from the annotations. In
practice, where a fingerprint expert recognizes the importance of
precise annotations and adjusts accordingly, it is a reasonable
assumption that the sensitivity will be higher (and thus the false
negative rate will be lower) than what is represented in this section;
however, a quantitative measure of how much higher the sensitivity
would be in practice is unknown at this time. Nevertheless, the
sensitivity of the method is expected to increase as examiners gain
more experience and become more precise in their feature
annotations — similar to when examiners gain a better under-
standing of how feature annotations impact the performance of
AFIS search results and adjust their annotation habits accordingly.

3.2. Specificity

The specificity was evaluated using the non-mated test dataset
#1 (known to be non-mated) as well as the non-mated test datasets
#2a and #2b (known to be non-mated, “close non-match” from
AFIS database search). The use of both datasets provides two
different perspectives of the specificity as a result of prints being
paired with non-mated impressions selected arbitrarily (non-
mated dataset #1) as well prints being paired with the most-
similar non-mated impression selected from a database of
approximately 100 million others. Table 4 provides the specificity
using non-mated test dataset #1. Table 5a and 5b provides the
specificity using non-mated test datasets #2a and #2b (Table 5a —

“delta” region; Table 5b — “core” region).
With respect to the specificity calculations listed above, it is

important to note that the values are limited to the output of the
FRStat algorithm alone; thus, these values should not be confused
with the overall specificity of the latent print examination method
in general which is much improved by the input of the fingerprint
expert. In practice, where a fingerprint expert’s visual examination
will precede the calculation of a similarity statistic value using
FRStat and serve as an initial means of discrimination using details
that FRStat is not designed to take into account, it is a reasonable
assumption that the specificity will be much higher (and thus the
false positive rate will be much lower) than what is represented in
this section. However, because there are no publically available



Table 1
Sensitivity of the method using mated test dataset #1 (known to be mated) for each quantity of features (ranging from 5 to 15). Sensitivity was evaluated using a ratio of 1, 10,
and 100 as the thresholds.

Feature quantity Number of configurations (Mated dataset #1) Sensitivity (ratio >1) Sensitivity (ratio >10) Sensitivity (ratio >100)

5 2798 0.657 0.249 0.085
6 2703 0.708 0.381 0.145
7 2550 0.736 0.478 0.234
8 2367 0.823 0.593 0.402
9 2092 0.892 0.755 0.565
10 1898 0.928 0.824 0.645
11 1655 0.947 0.860 0.710
12 1432 0.970 0.925 0.799
13 1230 0.984 0.949 0.825
14 994 0.980 0.971 0.902
15 97 0.990 0.979 0.959

Table 2
Consistency between ratio values greater than 1, 10, and 100 and experts’ interpretation of mated status using mated test dataset #2 (accepted to be mated) for each quantity
of features (ranging from 5 to 15).

Feature quantity Number of configurations (Mated dataset #2) Consistency (ratio >1) Consistency (ratio >10) Consistency (ratio >100)

5 1772 0.730 0.201 0.052
6 1674 0.783 0.317 0.100
7 1512 0.830 0.446 0.163
8 1317 0.913 0.636 0.328
9 1166 0.959 0.852 0.595
10 988 0.966 0.899 0.721
11 781 0.968 0.948 0.827
12 706 0.965 0.965 0.905
13 583 0.971 0.971 0.949
14 480 0.973 0.960 0.960
15 47 0.979 0.957 0.957

Table 3
Consistency between ratio values greater than 1,10, and 100 and experts’ interpretation of mated status using mated test dataset #3 (believed to be mated) for each quantity of
features (ranging from 5 to 15).

Feature quantity Number of configurations (Mated dataset #3) Consistency (ratio >1) Consistency (ratio >10) Consistency (ratio >100)

5 6050 0.794 0.287 0.088
6 6038 0.840 0.436 0.150
7 5982 0.870 0.530 0.239
8 5830 0.927 0.716 0.437
9 5526 0.955 0.889 0.690
10 5040 0.961 0.927 0.805
11 4441 0.965 0.934 0.868
12 3876 0.971 0.953 0.910
13 3226 0.970 0.958 0.920
14 2638 0.978 0.974 0.961
15 258 0.981 0.977 0.970

Table 4
Specificity of the method using non-mated test dataset #1 (known to be non-mated) for each quantity of features (ranging from 5 to 15). Specificity was evaluated using a ratio
of 1, 10, and 100 as the thresholds.

Feature quantity Number of image pairs (Non-mated dataset #1) Specificity (ratio <1) Specificity (ratio <10) Specificity (ratio <100)

5 500 0.818 1.000 1.000
6 500 0.850 0.992 1.000
7 500 0.900 0.994 1.000
8 500 0.912 0.986 1.000
9 500 0.940 0.952 0.990
10 500 0.970 0.976 0.992
11 500 0.978 0.982 0.990
12 500 0.988 0.992 0.998
13 500 0.988 0.994 0.996
14 500 0.988 0.992 0.994
15 500 0.996 1.000 1.000
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Table 5a
Specificity of the method using non-mated test dataset #2a (known to be non-mated; “close non-match” from AFIS database searches of the delta region) for each quantity of
features (ranging from 5 to 15). Specificity was evaluated using a ratio of 1, 10, and 100 as the thresholds.

Feature quantity Number of image pairs (Non-mated dataset #2a — “delta” region) Specificity (ratio <1) Specificity (ratio <10) Specificity (ratio <100)

5 99 0.566 0.788 0.980
6 99 0.687 0.747 0.980
7 96 0.688 0.719 0.896
8 99 0.747 0.788 0.812
9 99 0.818 0.818 0.828
10 97 0.814 0.835 0.845
11 96 0.802 0.823 0.823
12 98 0.857 0.867 0.888
13 99 0.899 0.929 0.939
14 100 0.980 0.990 0.990
15 100 0.920 0.920 0.940

Table 5b
Specificity of the method using non-mated test dataset #2b (known to be non-mated; “close non-match” from AFIS database searches of the core region) for each quantity of
features (ranging from 5 to 15). Specificity was evaluated using a ratio of 1, 10, and 100 as the thresholds.

Feature quantity Number of image pairs (Non-mated dataset #2b � “core” region) Specificity (ratio <1) Specificity (ratio <10) Specificity (ratio <100)

5 94 0.787 0.979 1.000
6 96 0.802 0.927 1.000
7 95 0.884 0.926 0.979
8 96 0.906 0.938 1.000
9 95 0.884 0.952 0.990
10 96 0.969 0.990 1.000
11 95 0.989 0.989 0.989
12 97 1.000 1.000 1.000
13 97 1.000 1.000 1.000
14 96 1.000 1.000 1.000
15 95 1.000 1.000 1.000
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datasets to empirically measure how often non-mated impressions
are falsely included by fingerprint experts and which result in
sufficiently high similarity statistic values using this method, a
quantitative measure of how much higher the specificity would be
in practice cannot be determined at this time.

3.3. Receiver Operator Characteristic (ROC)

The Receiver Operator Characteristic (ROC) illustrates the
performance of the method across the full range of potential
threshold values. Fig. 6 illustrates the ROC curves for mated test
dataset #1 (known to be mated) and non-mated test dataset #1
(known to be non-mated) as well as the non-mated test datasets
#2a and #2b (known to be non-mated, “close non-match” from
AFIS database search). The use of both non-mated datasets
provides two different perspectives of the performance of the
method as a result of prints being paired with non-mated
impressions selected arbitrarily (non-mated dataset #1) as well
prints being paired with the most-similar non-mated impression
selected from a database of approximately 100 million others.

From Fig. 6 as well as Tables 4 and 5, we can make two
important observations. First, the specificity rates from non-mated
dataset #1 and non-mated dataset #2b are very similar to one
another. Second, while the specificity rates from non-mated
dataset #2a provides an indication of the “worst case-scenario”
since it narrowly focuses on the #1 rank candidates out of
approximately 100 million other non-mated prints as a result of
AFIS searches and only considers the delta region of the fingerprint
during the searches, the method still demonstrates the ability to
accurately classify mated and non-mated impressions. Taking
together, the performance characteristics discussed above may
provide some general context to the results when non-mated
samples are selected at random or whether they were selected on
the basis of their similarity from large database searches. The
samples comprising non-mated datasets #2a and #2b are limited
in size due to operational constraints at the time of collection. A
likely consequence of the small sample sizes is the subtle
variability in the performance characteristics observed between
the various feature quantities, particularly between 13, 14, and 15
features where the observed data suggests 14 features had better
performance characteristics than 15 features. With a larger sample,
the uncertainty associated with the performance characteristics
will be reduced; therefore, further research into the impact of AFIS
searches on the specificity rates is encouraged. Nevertheless,
because the intent of the method is to estimate the relative
prevalence of similarity statistic values among the broader
population of non-mated impressions rather than focus only on
“close non-mates” from large database searches, the low sample
size of these datasets (#2a and #2b) is not considered a critical
limitation — their selection as the #1 rank candidate means they
were already distinguished from all other impressions in the
system using the high performance AFIS algorithms.

3.4. Within-sample variability

The within-sample variability captures the variation of the
similarity statistic values as a result of multiple measurements of
the same features without re-annotations (due to the random
resampling scheme discussed in greater detail in Supplemental
Appendix I). Table 6 provides the within-sample variability of the
method in terms of the combined standard deviation of similarity
statistic values. These results demonstrate very low within sample
variability and are insignificant compared to the between-sample
variability.

3.5. Between-sample variability

The between-sample variability captures the variation of the
similarity statistic values as a result of multiple (different)
measurements of different features. Table 7 provides the



Fig. 6. ROC curves illustrating the performance of the method using mated test dataset #1 (known to be mated) and non-mated test datasets #1 (known to be non-mated) as
well as non-mated test datasets #2a (known to be non-mated; “close non-match” from AFIS database searches of the delta region) and #2b (known to be non-mated; “close
non-match” from AFIS database searches of the core region) for each quantity of features (ranging from 5 to 15). The solid black line represents the ROC using non-mated test
dataset #1 (known to be non-mated). The dotted black line represents the ROC using non-mated test dataset #2a (known to be non-mated; “close non-match” from AFIS
database searches of the delta region). The solid grey line represents the ROC using non-mated test dataset #2b (known to be non-mated; “close non-match” from AFIS
database searches of the core region). The x-axis represents 1 — specificity. The y-axis represents the sensitivity.
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between-sample variability of the method in terms of the
similarity test statistic. These results demonstrate between-
sample variabilities consistent with those represented by the
estimated parameters of the population distributions discussed in
further detail in Supplemental Appendix IV and are therefore
consistent with expectations.

3.6. General discussion

3.6.1. Ratio values
The ratio values obtained with the method will vary depending

on the measured similarity between the two impressions, reflected
by the global similarity statistic, GSS(t), as well as the quantity of
features. As the GSS(t) value and quantity of features increase, the
Table 6
Within-sample variability (combined standard deviation from 25 repeat measure-
ments each for 92 different images) of the similarity statistic value (GSS(t)) for each
quantity of features (ranging from 5 to 15).

Feature quantity Combined s GSS(t) Mean GSS(t)

5 0.593 20.742
6 0.648 20.202
7 0.651 24.736
8 0.692 25.104
9 0.831 25.869
10 0.903 32.910
11 0.916 33.371
12 0.969 37.555
13 1.067 39.275
14 1.196 42.979
15 1.244 47.464
ratio value will also increase indicating stronger significance of the
association between the paired impressions. Theoretically, the
ratio values can range from negative infinity to positive infinity;
however, this provides little context to understanding the range of
ratio values that one may plausibly observe in practice. Fig. 7
illustrates the range of ratio values based on the GSS(t) values
corresponding to 95% of the theoretical distribution modeling the
mated source dataset (ranging from a left tail probability of 0.025–
0.975) for each quantity of features.

From Fig. 7, we observe a steady increase of ratio values as the
quantity of features increases. This steady increase is a mathemat-
ical consequence of the algorithms for calculating the similarity
statistic and consistent with the expected behavior of the method
in terms of experience by forensic experts. Although the actual
Table 7
Between-sample variability (standard deviation) of the similarity statistic value
(GSS(t)) for each quantity of features (ranging from 5 to 15).

Feature quantity Number of configurations Mean GSS(t) s GSS(t)

5 10,620 20.864 13.585
6 10,415 23.849 15.112
7 10,044 25.372 16.681
8 9514 29.557 18.41
9 8784 32.392 19.642
10 7926 36.602 21.666
11 6877 39.826 23.653
12 6014 44.864 25.133
13 5039 47.81 27.192
14 4112 52.908 27.698
15 402 56.952 29.233



Fig. 7. Box plots illustrating the plausible range of ratio values that may be
reasonably expected for each quantity of features based on GSS(t) values
corresponding to 95% of the theoretical distribution modeling the mated source
dataset (ranging from a probability of 0.025 to 0.975). The x-axis represents the
number of features (ranging from 5 to 15). The y-axis represents the log10 ratio
value.
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ratio values are much lower than what experts might expect, these
ratio values are highly conservative since: (1) the method does not
take into account all aspects of the impression, such as pattern
type, feature type, ridge counts, and other types of features
considered by an expert, (2) the similarity statistic value provides a
single dimensional summary of the similarity between two
impressions and does not consider the prevalence of the specific
arrangement of features under consideration within the popula-
tion, (3) the empirical distributions of similarity statistic values
were conditioned such that the non-mated distribution was biased
towards higher similarity statistic values (in terms of randomly
paired impressions) and the mated distribution was biased
towards lower similarity statistic values, and (4) logistic mixture
distributions were chosen to model the empirical distributions of
similarity statistic values on the basis of their heavier tails thus
providing more conservative estimates of probabilities in the
extreme ends of the distributions compared to Gaussian mixture
distributions.

Although the ratio values provide a measure of the significance
(i.e. strength of an association) between two impressions, common
practice by forensic experts is to conduct an experience-based
judgment and classify an impression as originating from a specific
individual (i.e. individualization decision) based on personal
confidence and subjective observation. The accuracy of expert
determinations of individualization has been evaluated by Ulery
et al. [27] finding approximately 0.1% false individualization rate. In
a subsequent study [28], Ulery et al. found that individualization
determinations increase as the number of annotated features
increase. Further, among all individualization decisions (n = 1,653),
Table 8
Percentage of individualization decisions by fingerprint experts on
fingerprint images having different numbers of features (ranging
from 5 to 15). Table values estimated from Fig. 3B in Ref. [28].

Feature quantity % Individualization decisions

5 2
6 17
7 47
8 64
9 81
10 90
11 92
12 95
13 97
14 99
15 96
only 1% were based on mated comparisons containing less than 7
features and among all mated comparisons with 12 or more
features, 98.4% resulted in individualization decision. Table 8
provides the percentage of individualization decisions for each
number of features (ranging from 5 to 15) from Ref. [28]. Although
a loose comparison, given the accuracy of individualization
determinations from Ref. [27] and the breakdown of individualiza-
tion decisions as it relates to the number of annotated features
from Ref. [28], these data may provide some general context for
understanding how the results from this method compare to
performance metrics and individualization decision behaviors by
experts in traditional practice. Interestingly, if we compare the
inter-quartile range of ratio values for each quantity of features
from Fig. 7 above to the individualization determinations in
Table 8, we see that the inter-quartile ranges for 9 or more features
exceeded a ratio of 10, which correspond to reasonably high
specificity rates. Having discussed the comparisons between the
ratio values of this method and experts’ performance when making
individualization decisions, caution should be exercised to ensure
the probability estimates from this method are not incorrectly
interpreted. The results provide the ratio of the estimated
probabilities of a given similarity statistic value or more extreme
among datasets of similarity statistic values from mated and non-
mated comparisons. The results do not provide the probability of
observing a specific configuration of features in the population or
the probability that a specific individual is the source of an
impression. Accordingly, although this method will provide an
empirical foundation to the strength of an association between two
impressions, determinations that specific individual is the source
of an impression (i.e. individualization decisions) remain a
subjective opinion by the expert.

3.6.2. Method limitations
The major limitations of the method include: (1) the similarity

statistic values are dependent upon the subjective detection and
annotation of friction ridge skin features by the human expert. (2)
The method is only able to consider what the expert annotates and
is not able to evaluate the accuracy of feature annotations by the
expert. (3) The method requires a minimum of five features and a
maximum of fifteen features. The minimum of five features is due
to the manner in which the similarity statistic is calculated. The
maximum of fifteen features was a cutoff decision by the authors
due to the computational impact of running the pairing algorithm
on configurations containing higher numbers of features based on
the current software implementation. For friction ridge skin
impressions that contain more than fifteen features, only fifteen
features can be encoded for statistical evaluation. This does not
prevent the expert from making reference to the additional
features available, but were not able to be encoded and evaluated
by this version of the software application. (4) The weight
functions are based on lateral distortions of friction ridge skin
impressions on flat surfaces and may not capture all types of
extreme distortions which may be encountered in practice, such as
substrate, matrix, or photographic effects. (5) The method is not
designed to evaluate all aspects of the impression, such as pattern
type, feature type, ridge counts, and other types of features
considered by an expert; thus, the quantitative results are
artificially attenuated and conservative.

3.6.3. Considerations for policy & procedure
Taking into consideration the major limitations described

above, general considerations for policy & procedure include:
(1) the method should only be used after the expert has visually
analyzed, detected, and annotated friction ridge skin features
which are believed to correspond between two separate impres-
sions of friction ridge skin. The method should not be used on
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impressions in which the analyst is able to visually exclude the two
impressions as originating from the same source. (2) The method
should be used in accordance with a set of strict policies and
procedures to guard against potential cognitive biases in the
analysis, detection, interpretation and annotation of friction ridge
skin features as well as a quality assurance program to verify the
accuracy of the annotated features. (3) The method should be used
on digital images having a resolution of 500 pixels per inch or
higher to ensure distance calculations are not impacted by lower
resolution images.

Despite the limitations described above, this method
provides several advantages which far outweigh the limitations.
Most importantly, it provides fingerprint experts the capability
to demonstrate the reliability of fingerprint evidence for the case
at hand and ensure the evidence is reported with an empirically
grounded basis. Further, having the ability to quantify the strength
of fingerprint comparison, the evidence can be reported in a
more transparent and standardized fashion with clearly defined
criteria for conclusions and known error rate information.
Supplemental Appendix V provides an example demonstrating
the use of FRStat.

4. Conclusion

Over the years, the forensic science community has faced
increasing amounts of criticism by scientific and legal commenta-
tors, challenging the validity and reliability of many forensic
examination methods that rely on subjective interpretations by
forensic practitioners. Among those concerns is the lack of an
empirically demonstrable basis to evaluate and report the strength
of the fingerprint evidence for a given case. In this paper, a method
is presented which provides a statistical assessment of the strength
of fingerprint evidence. The method measures the similarity
between friction ridge skin impressions using details annotated by
human experts to calculate a similarity statistic (i.e. score), which
is then evaluated against databases of similarity statistic values
derived from pairs of impressions made by mated (same) and non-
mated (different) sources of friction ridge skin impressions
relevant for forensic casework. The distributions of similarity
statistic values were developed such that the non-mated data are
biased to higher similarity statistic values and mated data are
biased to lower similarity statistic values. For non-mated data, this
was accomplished by conditioning on (1) the delta region of
friction ridge skin which was determined to maximize the
opportunities of observing higher similarity statistic values, and
(2) any set of n features determined to be “optimally paired” from a
larger set of m possible features with respect to a combinatorial
optimization algorithm under any condition of rotation and
translation such that the similarity statistic values are maximized.
For mated data, the bias to lower values was accomplished by
conditioning on lateral pressures and other distortions such that
the similarity statistic values are minimized and ensuring that the
distributions represent the full range of plausible similarity
statistic values that could reasonably be observed in casework
when impressions are subject to various distortions during
deposition. The empirical distributions were statistically modeled
and plausible estimates of population parameters were evaluated
using the Kolmogorov–Smirnov (K–S) “goodness of fit” test. The K–
S test was selected for this purpose on the basis of its ubiquitous
use as a non-parametric test of the equality of continuous
probability distributions. The strength of the fingerprint evidence
is calculated as a ratio of the tail probabilities from the
distributions of similarity statistic values of mated and non-mated
impressions. The numerator is the left tail probability of a given
similarity statistic value or lower among the distribution of values
from mated sources. The denominator is the right tail probability of
a given similarity statistic value or higher among the distribution of
values from non-mated sources. Although similar in appearance,
the ratio is not a true likelihood ratio or Bayes’ factor and therefore
should not be used to estimate a posterior probability for a
proposition.

The performance of the method was evaluated using a variety of
different mated and non-mated datasets, including the most
similar non-mated impressions from AFIS searches against a
database of approximately 100 million other fingers. The results
show strong performance characteristics. As the number of
features increase, the magnitude of the ratio values increase as
well as the ability to discriminate between mated and non-mated
impressions, often with values supporting specificity rates greater
than 99%. Despite the trend of increasing ratio values, there is still
some overlap of the values between the different quantities of
features. Consequently, similar to the findings in Refs. [17,22], these
data demonstrate the importance of evaluating the strength of the
fingerprint evidence based on the measurable attributes of the
given comparison rather than relying on generalizations based
solely on the number of features.

As with any method, there are limitations to consider. For
example, this method relies on the features annotated by the
expert but does not take into account all aspects of fingerprint
evidence. As a result, the quantitative results for reported
associations using this method (FRStat) will be artificially low.
Despite the limitations, FRStat provides fingerprint experts the
capability to demonstrate the reliability of fingerprint evidence for
the case at hand and ensure the evidence is evaluated with an
empirically grounded basis. Further, having the ability to quantify
the strength of the fingerprint comparison, the evidence can be
reported in a more transparent and standardized fashion with
clearly defined criteria for conclusions and known error rate
information.

Although various aspects of the method may be further
optimized, the performance characteristics described are proposed
as a sufficient basis to demonstrate the foundational validity of the
method to perform within the scope of its intended purpose — as a
means of providing a statistical measure of the strength of a given
fingerprint comparison. Further optimizations which may improve
upon the method’s performance are encouraged for future works.
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